390 research outputs found

    Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall

    Full text link
    Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals around domain walls in congruent and near-stoichiometric lithium niobate. The observed asymmetry is shown to have a strong correlation to crystal stoichiometry, suggesting defect-domain wall interactions. A defect-dipole model is proposed. Finite element method is used to simulate the electromechanical processes at the wall and reconstruct the images. For the near-stoichiometric composition, good agreement is found in both form and magnitude. Some discrepancy remains between the experimental and modeling widths of the imaged effects across a wall. This is analyzed from the perspective of possible electrostatic contributions to the imaging process, as well as local changes in the material properties in the vicinity of the wall

    Metamorphosis of plasma turbulence-shear flow dynamics through a transcritical bifurcation

    Full text link
    The structural properties of an economical model for a confined plasma turbulence governor are investigated through bifurcation and stability analyses. A close relationship is demonstrated between the underlying bifurcation framework of the model and typical behavior associated with low- to high-confinement transitions such as shear flow stabilization of turbulence and oscillatory collective action. In particular, the analysis evinces two types of discontinuous transition that are qualitatively distinct. One involves classical hysteresis, governed by viscous dissipation. The other is intrinsically oscillatory and non-hysteretic, and thus provides a model for the so-called dithering transitions that are frequently observed. This metamorphosis, or transformation, of the system dynamics is an important late side-effect of symmetry-breaking, which manifests as an unusual non-symmetric transcritical bifurcation induced by a significant shear flow drive.Comment: 17 pages, revtex text, 9 figures comprised of 16 postscript files. Submitted to Phys. Rev.

    Aerodynamic investigations of ventilated brake discs.

    Get PDF
    The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometries, rotated in free air, were measured using a five-hole pressure probe and a hot-wire anemometry system. The principal measurements were taken using two-component hot-wire techniques and were used to determine mean and unsteady flow characteristics at the exit of the brake rotors. Using phase-locked data processing, it was possible to reveal the spatial and temporal flow variation within individual rotor passages. The effects of disc geometry and rotational speed on the mean flow, passage turbulence intensity, and mass flow were determined. The rotor exit jet and wake flow were clearly observed as characterized by the passage geometry as well as definite regions of high and low turbulence. The aerodynamic flow characteristics were found to be reasonably independent of rotational speed but highly dependent upon rotor geometry

    Transport and turbulence studies in the linear ohmic confinement regime in Alcator C-Mod

    Get PDF
    Transport in ohmically heated plasmas in Alcator C-Mod was studied in both the linear (LOC) and saturated (SOC) ohmic L-mode confinement regimes and the importance of turbulent transport in the region r/a = 0.5–0.8 was established. After an extensive analysis with TGLF and GYRO, it is found that using an effective impurity ion species with Z[subscript i] = 8, and moderately high Z[subscript eff] (2.0–5.6), in the LOC regime electron transport becomes dominant due to TEM turbulence. The key ingredient in the present results is the observation that dilution of the main ion species (deuterium) by impurity species of moderate charge state reduces dominant ITG turbulence, in contrast to the SOC regime with little, if any dilution. The turbulent spectrum measured with the phase contrast imaging (PCI) diagnostic is in qualitative agreement with predictions of a synthetic PCI diagnostic adopted to Global GYRO. The toroidal rotation in the low-density LOC regime is in the co-current direction but as the density is raised in the SOC regime the rotation reverses to the counter current drive direction. The impurity content of the plasma was measured recently and an effective Z[subscript i] of 9 was deduced.United States. Dept. of Energy (Grant DE-FC02-99ER54512-CMOD

    Energetic ion transport by microturbulence is insignificant in tokamaks

    Get PDF
    Energetic ion transport due to microturbulence is investigated in magnetohydrodynamic-quiescent plasmas by way of neutral beam injection in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. A range of on-axis and off-axis beam injection scenarios are employed to vary relevant parameters such as the character of the background microturbulence and the value of Eb/Te , where Eb is the energetic ion energy and Te the electron temperature. In all cases, it is found that any transport enhancement due to microturbulence is too small to observe experimentally. These transport effects are modeled using numerical and analytic expectations that calculate the energetic ion diffusivity due to microturbulence. It is determined that energetic ion transport due to coherent fluctuations (e.g., Alfvén eigenmodes) is a considerably larger effect and should therefore be considered more important for ITER.United States. Dept. of Energy (DE-FC02-04ER54698)United States. Dept. of Energy (DE-FC02-99ER54512)United States. Dept. of Energy (DE-FG03-97ER54415)United States. Dept. of Energy (DE-FG02-07ER54917)United States. Dept. of Energy (DE-AC02-09CH11466)United States. Dept. of Energy (SC-G903402)United States. Dept. of Energy (DE-FG02-08ER54984)United States. Dept. of Energy ( DE-AC52-07NA27344)United States. Dept. of Energy ( DE-FG02-89ER53296)United States. Dept. of Energy (DE-FG02-08ER54999)United States. Dept. of Energy (DE-AC05-00OR22725
    corecore