475 research outputs found

    Electronic band gap reduction and intense luminescence in Co and Mn ion-implanted SiO2_2

    Full text link
    Cobalt and manganese ions are implanted into SiO2_2 over a wide range of concentrations. For low concentrations, the Co atoms occupy interstitial locations, coordinated with oxygen, while metallic Co clusters form at higher implantation concentrations. For all concentrations studied here, Mn ions remain in interstitial locations and do not cluster. Using resonant x-ray emission spectroscopy and Anderson impurity model calculations, we determine the strength of the covalent interaction between the interstitial ions and the SiO2_2 valence band, finding it comparable to Mn and Co monoxides. Further, we find an increasing reduction in the SiO2_2 electronic band gap for increasing implantation concentration, due primarily to the introduction of Mn- and Co-derived conduction band states. We also observe a strong increase in a band of x-ray stimulated luminescence at 2.75 eV after implantation, attributed to oxygen deficient centers formed during implantation.Comment: 8 pages, 6 figure

    Influence of the n-p asymmetry on decay properties of palladium isotopes

    Get PDF
    The INDRA 4 π-array was coupled with the high acceptance spectrometer VAMOS to study the decay of palladium isotopes with a large range of N/Z = 1–1.26, produced in the 34,36,40Ar + 58,60,64Ni reactions at E/A = 13 .3MeV. The coupling of both apparatuses gives the opportunity to detect complete events with light charged particles identified in INDRA and the compound nucleus residue in VAMOS. The detailed studies of this experiment put constraints on the N/Z effects in the statistical models

    Personal preferences for Personalised Trials among patients with chronic diseases: an empirical Bayesian analysis of a conjoint survey.

    Get PDF
    OBJECTIVE: To describe individual patient preferences for Personalised Trials and to identify factors and conditions associated with patient preferences. DESIGN: Each participant was presented with 18 conjoint questions via an online survey. Each question provided two choices of Personalised Trials that were defined by up to eight attributes, including treatment types, clinician involvement, study logistics and trial burden on a patient. SETTING: Online survey of adults with at least two common chronic conditions in the USA. PARTICIPANTS: A nationally representative sample of 501 individuals were recruited from the Chronic Illness Panel by Harris Poll Online. Participants were recruited from several sources, including emails, social media and telephone recruitment of the target population. MAIN OUTCOME MEASURES: The choice of Personalised Trial design that the participant preferred with each conjoint question. RESULTS: There was large variability in participants\u27 preferences for the design of Personalised Trials. On average, they preferred certain attributes, such as a short time commitment and no cost. Notably, a population-level analysis correctly predicted 62% of the conjoint responses. An empirical Bayesian analysis of the conjoint data, which supported the estimation of individual-level preferences, improved the accuracy to 86%. Based on estimates of individual-level preferences, patients with chronic pain preferred a long study duration (p≤0.001). Asthma patients were less averse to participation burden in terms of data-collection frequency than patients with other conditions (p=0.002). Patients with hypertension were more cost-sensitive (p\u3c0.001). CONCLUSION: These analyses provide a framework for elucidating individual-level preferences when implementing novel patient-centred interventions. The data showed that patient preference in Personalised Trials is highly variable, suggesting that individual differences must be accounted for when marketing Personalised Trials. These results have implications for advancing precise interventions in Personalised Trials by indicating when rigorous scientific principles, such as frequent monitoring, is feasible in a substantial subset of patients

    Forschendes Lernen. Konzeptuelle Grundlagen und Potenziale digitaler Medien

    Full text link
    Im folgenden Artikel wird dargelegt, was unter dem Konzept des forschenden Lernens zu verstehen ist und welche Einsatzmöglichkeiten sich für das forschende Lernen im Kontext Universität ergeben. Dabei werden speziell diejenigen Merkmale theoretisch herausgearbeitet, die aus Lehrendenperspektive Anknüpfungspunkte für einen prozessbegleitenden Medieneinsatz bieten. Exemplarisch wird eine Lehrveranstaltung angeführt, die auf Fallebene zeigt, wie ein forschungsorientiertes Seminar um digitale Medien angereichert werden kann und welche Chancen und Grenzen sich bei der selbstgesteuerten Verwendung digitaler Medienangebote ergeben. Die Evaluation des Seminars zeigt, dass die Studierenden einen großen Lernzuwachs erleben, jedoch teilweise durch die Offenheit des Lernens überfordert sind. Diese und andere Gründe führen dazu, dass die von Lehrenden vorgeschlagenen Medienangebote selten bis kaum genutzt werden. Zudem sehen Lernende die Qualität virtuell distribuierter Inhalte kritisch, was sich auf die Akzeptanz und die Nutzung der vorhandenen digitalen Medienangebote auswirkt. (DIPF/Orig.

    Double-pump technique – one step closer towards efficient liquid-based THz sources

    Get PDF
    By irradiating a water jet with double pulses, we demonstrate 4-fold higher THz wave generation than for a single pump pulse. The dependence of the enhanced THz signal on the temporal delay between two collinear pulses reveals the optimal time for launching signal pulse is near 2-4 ps, which corresponds to the time needed to create the complete pre-ionization state when sufficient electron density is already induced, and there is no plasma reflection of the pump pulse radiation. The increase in THz waves generation efficiency corresponds to the case of water jet excitation by the pulses with an optimal duration for a certain jet thickness, which is determined by the spatial pulse size. Using a theoretical model of the interaction of a high-intensity sub-picosecond pulse with an isotropic medium, we held a numerical simulation, which well describes the experimental results when using 3 ps value of population relaxation time. Thus, in this work, double pump method allows not only to increase the energy of the generated THz waves, but also to determine the characteristic excited state lifetime of liquid water. The optical-to-terahertz conversion efficiency in case of double pulse excitation of water column is of the order of 0.5·10−3, which exceeds the typical values for THz waves generation during two-color filamentation in air and comparable with the achievable values due to the optical rectification in some crystals

    Nucleobindin Co-Localizes and Associates with Cyclooxygenase (COX)-2 in Human Neutrophils

    Get PDF
    The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis

    Sleep and energy intake in early childhood

    Get PDF
    Background And Objectives: Shorter sleep is associated with higher weight in children, but little is known about the mechanisms. The aim of this study was to test the hypothesis that shorter sleep was associated with higher energy intake in early childhood. Methods: Participants were 1303 families from the Gemini twin birth cohort. Sleep duration was measured using the Brief Infant Sleep Questionnaire when the children were 16 months old. Total energy intake (kcal per day) and grams per day of fat, carbohydrate and protein were derived from 3-day diet diaries completed by parents when children were 21 months old. Results: Shorter nighttime sleep was associated with higher total energy intake (P for linear trend=0.005). Children sleeping <10 h consumed around 50 kcal per day more than those sleeping 11–<12 h a night (the optimal sleep duration for children of this age). Differences in energy intake were maintained after adjustment for confounders. As a percentage of total energy intake, there were no significant differences in macronutrient intake by sleep duration. The association between sleep and weight was not significant at this age (P=0.13). Conclusions: This study provides the first evidence that shorter nighttime sleep duration has a linear association with higher energy intake early in life. That the effect is observed before emergence of associations between sleep and weight indicates that differences in energy intake may be a mechanism through which sleep influences weight gain

    Reverse Engineering a Signaling Network Using Alternative Inputs

    Get PDF
    One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an “AIs-Deletions matrix” that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams

    The Level of the Transcription Factor Pax6 Is Essential for Controlling the Balance between Neural Stem Cell Self-Renewal and Neurogenesis

    Get PDF
    Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells, a mechanism that has marked parallels with the transcriptional control of embryonic stem cell self-renewal

    Short-term fatty acid intervention elicits differential gene expression responses in adipose tissue from lean and overweight men

    Get PDF
    The goal of this study was to investigate the effect of a short-term nutritional intervention on gene expression in adipose tissue from lean and overweight subjects. Gene expression profiles were measured after consumption of an intervention spread (increased levels of polyunsaturated fatty acids, conjugated linoleic acid and medium chain triglycerides) and a control spread (40 g of fat daily) for 9 days. Adipose tissue gene expression profiles of lean and overweight subjects were distinctly different, mainly with respect to defense response and metabolism. The intervention resulted in lower expression of genes related to energy metabolism in lean subjects, whereas expression of inflammatory genes was down-regulated and expression of lipid metabolism genes was up-regulated in the majority of overweight subjects. Individual responses in overweight subjects were variable and these correlated better to waist–hip ratio and fat percentage than BMI
    corecore