430 research outputs found

    A Literature Review on Substance Related Grief and Expressive Art Therapy Support Groups

    Get PDF
    In the year of 2017, 18.7 million Americans aged 18 years or older were reported to have a substance use disorder and the pervasiveness of substance related deaths escalated (McCance- Katz, 2017). Researchers have examined how grief experienced by substance users and their loved ones is often disenfranchised by social stigmatization, loss of support, and feelings of regret, blame, humiliation, and shame. According to Valentine, Bauld, and Walter, (2016) “bereavement following a drug or alcohol related death has been largely neglected in research and service provision, despite its global prevalence and potentially devastating consequences for those concerned,” (p. 283). Studies demonstrate a need for further research on death and loss within contemporary societies, while highlighting the demand for psychological support and resources for the bereaved impacted by substance abuse. The purpose of this literature review aimed to contribute a better understanding of this population and connect existing research to piece together the best practices to better serve them. This critical literature review consists of three sections examining the individualized grief experiences of this population within western cultures, the consequences of addiction, and drug use stigmatization. Lastly, the literature on grief support groups, substance abuse resources, and expressive art therapy practices will be summarized. Results uncovered certain themes and areas of complex grief within this population to consider for clinical applications in expressive art therapy support groups. For example, expressing secret and negative feelings about addictions in a safe, non-threatening way within a therapeutic group setting can bring victims out of the isolating effects of stigmatized loss (Mayton and Wester, 2018). Furthermore, this thesis discovered gaps in the literature for interventions designed to provide assistance for healing after drug-related losses

    Understanding shock dynamics in the inner heliosphere with modeling and type II radio data: A statistical study

    Get PDF
    We study two methods of predicting interplanetary shock location and strength in the inner heliosphere: (1) the ENLIL simulation and (2) the kilometric type II (kmTII) prediction. To evaluate differences in the performance of the first method, we apply two sets of coronal mass ejections (CME) parameters from the cone-model fitting and flux-rope (FR) model fitting as input to the ENLIL model for 16 halo CMEs. The results show that the ENLIL model using the actual CME speeds from FR-fit provided an improved shock arrival time (SAT) prediction. The mean prediction errors for the FR and cone-model inputs are 4.90±5.92 h and 5.48±6.11 h, respectively. A deviation of 100 km s−1 from the actual CME speed has resulted in a SAT error of 3.46 h on average. The simulations show that the shock dynamics in the inner heliosphere agrees with the drag-based model. The shock acceleration can be divided as two phases: a faster deceleration phase within 50 Rs and a slower deceleration phase at distances beyond 50 Rs. The linear-fit deceleration in phase 1 is about 1 order of magnitude larger than that in phase 2. When applying the kmTII method to 14 DH-km CMEs, we found that combining the kmTII method with the ENLIL outputs improved the kmTII prediction. Due to a better modeling of plasma density upstream of shocks and the kmTII location, we are able to provide a more accurate shock time-distance and speed profiles. The mean kmTII prediction error using the ENLIL model density is 6.7±6.4 h; it is 8.4±10.4 h when the average solar wind plasma density is used. Applying the ENLIL density has reduced the mean kmTII prediction error by ∼2 h and the standard deviation by 4.0 h. Especially when we applied the combined approach to two interacting events, the kmTII prediction error was drastically reduced from 29.6 h to −4.9 h in one case and 10.6 h to 4.2 h in the other. Furthermore, the results derived from the kmTII method and the ENLIL simulation, together with white-light data, provide a valuable validation of shock formation location and strength. Such information has important implications for solar energetic particle acceleration.Fil: Xie, H.. NASA. Goddard Space Flight Center; Estados Unidos. Department of Physics. Catholic University of America; Estados UnidosFil: St. Cyr, O.C.. NASA. Goddard Space Flight Center; Estados UnidosFil: Gopalswamy, N.. NASA. Goddard Space Flight Center; Estados UnidosFil: Odstrcil, D.. George Mason University. Department of Computational and Data Sciences; Estados UnidosFil: Cremades Fernandez, Maria Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentin

    STEREO SECCHI COR1-A/B Intercalibration at 180 deg Separation

    Get PDF
    The twin Solar Terrestrial Relations Observatory (STEREO) spacecraft reached a separation angle of 180 degrees on 6 February 2011. This provided a unique opportunity to test the intercalibration between the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) telescopes on both spacecraft for areas above the limb. So long as the corona is optically thin, at 180 degree separation each spacecraft sees the same corona from opposite directions. Thus, the data should appear as mirror images of each other. We report here on the results of the comparison of the images taken by the inner coronagraph (COR1) on the STEREO Ahead and Behind spacecraft in the hours when the separation was close to 180 degrees. We find that the intensity values seen by the two telescopes agree with each other to a high degree of accuracy. This validates both the radiometric intercalibration between the COR1 telescopes, and the method used to remove instrumental background from the images. The relative error between COR1-A and COR1-B is found to be less than 10(exp -9) B/B solar over most of the field-of-view, growing to a few x 10(exp -9) B/B solar for the brighter pixels near the edge of the occulter. The primary source of error is the background determination. We also report on the analysis of star observations which show that the absolute radiometric calibration of either COR1 telescope has not changed significantly since launch

    Space Weather Application Using Projected Velocity Asymmetry of Halo CMEs

    Full text link
    Halo coronal mass ejections (HCMEs) originating from regions close to the center of the Sun are likely to be responsible for severe geomagnetic storms. It is important to predict geo-effectiveness of HCMEs using observations when they are still near the Sun. Unfortunately, coronagraphic observations do not provide true speeds of CMEs due to the projection effects. In the present paper, we present a new technique allowing estimate the space speed and approximate source location using projected speeds measured at different position angles for a given HCME (velocity asymmetry). We apply this technique to HCMEs observed during 2001-2002 and find that the improved speeds are better correlated with the travel times of HCMEs to Earth and with the magnitudes ensuing geomagnetic storms.Comment: accepted for [publication in Solar Physic

    Prediction Space Weather Using an Asymmetric Cone Model for Halo CMEs

    Full text link
    Halo coronal mass ejections (HCMEs) are responsible of the most severe geomagnetic storms. A prediction of their geoeffectiveness and travel time to Earth's vicinity is crucial to forecast space weather. Unfortunately coronagraphic observations are subjected to projection effects and do not provide true characteristics of CMEs. Recently, Michalek (2006, {\it Solar Phys.}, {\bf237}, 101) developed an asymmetric cone model to obtain the space speed, width and source location of HCMEs. We applied this technique to obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO experiment during a period from the beginning of 2001 until the end of 2002 (solar cycle 23). These parameters were applied for the space weather forecast. Our study determined that the space speeds are strongly correlated with the travel times of HCMEs within Earth's vicinity and with the magnitudes related to geomagnetic disturbances

    An Asymmetric Cone Model for Halo Coronal Mass Ejections

    Full text link
    Due to projection effects, coronagraphic observations cannot uniquely determine parameters relevant to the geoeffectiveness of CMEs, such as the true propagation speed, width, or source location. The Cone Model for Coronal Mass Ejections (CMEs) has been studied in this respect and it could be used to obtain these parameters. There are evidences that some CMEs initiate from a flux-rope topology. It seems that these CMEs should be elongated along the flux-rope axis and the cross section of the cone base should be rather elliptical than circular. In the present paper we applied an asymmetric cone model to get the real space parameters of frontsided halo CMEs (HCMEs) recorded by SOHO/LASCO coronagraphs in 2002. The cone model parameters are generated through a fitting procedure to the projected speeds measured at different position angles on the plane of the sky. We consider models with the apex of the cone located at the center and surface of the Sun. The results are compared to the standard symmetric cone model

    Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?

    Get PDF
    The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure

    Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation

    Full text link
    In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs having well-measured masses against 12,050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10-80 minutes afterward, and we further require the flare and CME to occur within +/-45 degrees in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log(CME mass)~0.70*log(flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic
    corecore