4 research outputs found

    Environment and task modeling of long-term-autonomous service robots

    Get PDF
    Utilizing service robots in real-world tasks can significantly improve efficiency, productivity, and safety in various fields such as healthcare, hospitality, and transportation. However, integrating these robots into complex, human-populated environments for continuous use is a significant challenge. A key potential for addressing this challenge lies in long-term modeling capabilities to navigate, understand, and proactively exploit these environments for increased safety and better task performance. For example, robots may use this long-term knowledge of human activity to avoid crowded spaces when navigating or improve their human-centric services. This thesis proposes comprehensive approaches to improve the mapping, localization, and task fulfillment capabilities of service robots by leveraging multi-modal sensor information and (long- term) environment modeling. Learned environmental dynamics are actively exploited to improve the task performance of service robots. As a first contribution, a new long-term-autonomous service robot is presented, designed for both inside and outside buildings. The multi-modal sensor information provided by the robot forms the basis for subsequent methods to model human-centric environments and human activity. It is shown that utilizing multi-modal data for localization and mapping improves long-term robustness and map quality. This especially applies to environments of varying types, i.e., mixed indoor and outdoor or small-scale and large-scale areas. Another essential contribution is a regression model for spatio-temporal prediction of human activity. The model is based on long-term observations of humans by a mobile robot. It is demonstrated that the proposed model can effectively represent the distribution of detected people resulting from moving robots and enables proactive navigation planning. Such model predictions are then used to adapt the robot’s behavior by synthesizing a modular task control model. A reactive executive system based on behavior trees is introduced, which actively triggers recovery behaviors in the event of faults to improve the long-term autonomy. By explicitly addressing failures of robot software components and more advanced problems, it is shown that errors can be solved and potential human helpers can be found efficiently

    LiDAR-Based Localization for Formation Control of Multi-Robot Systems

    Get PDF
    Controlling the formation of several mobile robots allows for the connection of these robots to a larger virtual unit. This enables the group of mobile robots to carry out tasks that a single robot could not perform. In order to control all robots like a unit, a formation controller is required, the accuracy of which determines the performance of the group. As shown in various publications and our previous work, the accuracy and control performance of this controller depends heavily on the quality of the localization of the individual robots in the formation, which itself depends on the ability of the robots to locate themselves within a map. Other errors are caused by inaccuracies in the map. To avoid any errors related to the map or external sensors, we plan to calculate the relative positions and velocities directly from the LiDAR data. To do this, we designed an algorithm which uses the LiDAR data to detect the outline of individual robots. Based on this detection, we estimate the robots pose and combine this estimate with the odometry to improve the accuracy. Lastly, we perform a qualitative evaluation of the algorithm using a Faro laser tracker in a realistic indoor environment, showing benefits in localization accuracy for environments with a low density of landmarks

    Comparison of Synchrotron Radiation and Hydrogen Continuum Radiation in the Near VUV by Means of a Deuterium Transfer Standard

    No full text
    Abstract The spectral radiance of a deuterium lamp has been calibrated by the radiation of an electron synchrotron and by the continuum radiation of a high temperature hydrogen arc. The two measurements allow an indirect comparison of the two radiometric standards in the spectral range from 175 to 340 nm. They agree with each other within less than ± 5%.</jats:p

    Gummisubstanzen, Hemicellulosen, Pflanzenschleime, Pektinstoffe, Huminsubstanzen

    No full text
    corecore