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Abstract

Controlling the formation of several mobile robots allows for the connection of these
robots to a larger virtual unit. This enables the group of mobile robots to carry out
tasks that a single robot could not perform. In order to control all robots like a unit, a
formation controller is required, the accuracy of which determines the performance of
the group. As shown in various publications and our previous work, the accuracy and
control performance of this controller depends heavily on the quality of the localization
of the individual robots in the formation, which itself depends on the ability of the
robots to locate themselves within a map. Other errors are caused by inaccuracies in the
map. To avoid any errors related to the map or external sensors, we plan to calculate the
relative positions and velocities directly from the LiDAR data. To do this, we designed an
algorithm which uses the LiDAR data to detect the outline of individual robots. Based on
this detection, we estimate the robots pose and combine this estimatewith the odometry to
improve the accuracy. Lastly, we perform a qualitative evaluation of the algorithm using
a Faro laser tracker in a realistic indoor environment, showing benefits in localization
accuracy for environments with a low density of landmarks.
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1 Introduction

Robot formations are often used to extend a single robot’s capabilities or break downcomplex
tasks into simpler subtasks Feng et al. [1]. In thisway, robot formations increase theflexibility
of the overall robotic system and improve its ability to do new tasks. A group of robots is
required to maintain their formation even under the influence of disturbances to function as
a unit. This is done by the formation control. Depending on the control law, the formation
control requires the robot’s positions to be known either regarding a static map or relative to
the other robots. This localization is either done using external sensors (external camera or
laser tracker) Irwansyah et al. [2] or internal (on-board) sensors (internal cameras, LiDAR,
ultrasonic, ultrawideband ...) Nguyen et al. [3],Li et al. [4],Güler et al. [5],Bisson et al. [6]
together with knowledge of the environment (map). There are also solutions that combine
both principles, for example, an external transmitter sends a signal that is then received
by internal sensors. Examples of this are triangulation methods based on time of flight
measurements Choi et al. [7] or the recognition of artificially placed landmarks with known
positions Zhang et al. [8]. While external localization is generally more precise, it does
require more equipment and limits the working area. This is why we will focus on internal
sensors in this work.

When calculating two robots’ relative positions using internal sensors, it is common
to localize both robots within the map and then subtract the absolute positions. The main
drawbackof thismethod is the introductionof several sources of error. Firstly, the localization
within a given (perfect) map contains a rather significant error, which alone amounts to an
inaccuracy of severalmmChan et al. [9],Gang et al. [10]. Secondly, themap does not provide
a perfect representation of the real environment, which reduces accuracy even further. Also,
individual robots in a robot formation can obstruct the line of sight of other robots to
important features in the map, making localization more difficult. To counteract this type of
error, researchers have tried to estimate the relative position of the other robots directlyWasik
et al. [11],Franchi et al. [12],Teixido et al. [13],Huang et al. [14],Rashid and Abdulrazaaq
[15]. For example, this is done by detecting the outline of other robots in the laser scanner
dataWasik et al. [11]. For this purpose, the robot’s contour is approximated by simple shapes
such as rectangles or circles. These shapes are then searched for in the measurement data
of the laser scanners Teixido et al. [13]. If a sufficient number of points can be detected on
the robot’s outline, the position of the robot can be determined. If not, the position can be
estimated based on the last known position by using an extended Kalman filter (EKF) taking
the robot’s velocity either from odometry or derivation of the previous positions Huang et al.
[14].
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While there has been much research in this area, we could not find a solution perfectly
fitted to our needs. While researchers like Huang et al. Huang et al. [14] were able to
localize robots relative to each other, the pose estimation performance is insufficient. In
general, either the frequency of the estimation Wasik et al. [11] or the accuracy Huang et al.
[14],Franchi et al. [12],Koch et al. [16] was insufficient.1 In other cases, the algorithms used
require features (markers) Teixido et al. [13], a special robot shape Howard et al. [18] or
additional sensors Bisson et al. [6] not present on our hardware.

Fig. 1 Dimensions of the MiR 200 [mobile-industrial-robots.com]

2 SystemOverview

For our use case, wewant to determine the position and orientation (pose) of severalMiR 200
robots. The MiR 200 is a rectangular mobile robot with a footprint of 890mm by 580mm
(see Fig. 1). It is equipped with two sick s300 laser scanners on opposing corners of the
robot, giving it a 360-degree detection radius without any blind spots. In this publication,
we want to use both of these scanners to directly estimate the position of all robots in
our formation without the need to subtract error-prone absolute positions. For this, we are
proposing the algorithm shown in Fig. 2. In the first step, we fuse the sensor data from the
front and rear laser scanner. We then use the map to remove every data point caused by an
obstacle. Afterward, we use Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) to detect the potential robots in the remaining data. The next step is to check if

1In another publication Recker et al. [17] we have already investigated the theoretical accuracy of
our formation control and developed mechanical compensation units to compensate for the lateral
errors within the formation. Due to the mechanical design of the compensation units, they can only
compensate errors of individual robots up to 100mm.
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the potential robots are one of ourMiR 200 robots.We do this by checking if the shape of the
respective point-cloud matches the shape of one of our robots. The last step is to compute
the position and orientation and validate it.

Fig. 2 Flowchart of the proposed algorithm

3 Algorithm

As described above, our algorithm starts by removing known objects (obstacles) from the
measurement data. For this, we use a standard adaptive Monte Carlo Localization (AMCL)
algorithm to estimate the pose of every robot within our map. Next, we remove every data
point within close proximity ( 0.1m) of a known obstacle within the map.2 This process is
shown in Fig. 3. Note that this step is not mandatory for our algorithm to work and can be
skipped if no map is available or if localization in the map is impossible.

The next step is to detect clusters of points, which could be a robot. For this, we use an
implementation of DBSCAN clustering (based on Ester et al. [19]) to assign every point

2The safety PLC of the MiR 200 will trigger an emergency stop if it detects an object within 0.1m.
Accordingly, we except our robots to be at least 0.1m away from every object.
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Fig. 3 Eliminating obstacles from the data based on the map

to a group of points and remove noise from the data. As our laser scanner has an angular
resolution of about 0.4 degrees and the smallest side of our robot is 0.58m long, we expect
the scanners to detect at least 16 points on our robot - given the robot is less than 5m away.
Accordingly, every cluster consisting of less than 16 points can be disregarded. The step of
clustering is shown in Fig. 4.

1: Data w/o obstacles 2: DBSCAN clustering 3: Remove insufficient 
groups

Fig. 4 DCSCAN clustering to remove scattered points

The third step is to remove clusters that do not fit the shape or size of a robot (see Fig. 5).As
our robot is rectangular, only straight lines or 90-degree corners are valid shapes. In addition,
we require the length of the point clusters to match the length of one of our robots sides
with a maximum deviation of 20%. To do this detection, we expand on work from Zhang
et al. Zhang et al. [20] by adjusting the geometric parameters to our robot and changing the
orientation estimation to a multi-stage process. Instead of trying all possible orientations
between 0 and 90 degrees with a fixed step size, we make several passes with decreasing
step size. For the next stage, we only reduce the step size for the search space between the
two angles, which previously yielded the highest correspondence between measured values
and robot shape.

Applying all the previous steps, we are left with two similar groups of points. As booth
groups form a line, there are four theoretical robot positions for each line (see Fig. 6). Out of
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Fig. 5 Shape detection to remove (dynamic) obstacles with the wrong shape

these four positions, we eliminate the two with the closest distance to the measuring robot.
If a robot were at one of those two positions, the structure of the robot would obstruct the
line of sight to the detected line. Next, we compare the length of the point cluster to the
length of our robot’s front and side. This step is quite prone to errors. Because of the noise
of the sensors, and because of the clustering, the length of the visible side cannot always
be determined correctly. Therefore, the last step is to compare the new position estimate
with the previous one. By comparing the two estimates and the velocity readings from the
odometry, the most likely new position can be determined. In this way, other objects with a
similar shape to the robot can also be excluded.

Fig. 6 Center validation to eliminate impossible robot positions

Remark: The last step shown here necessarily requires the exchange of data between
the individual participants of the formation. However, in many cases, this exchange is not
possible or desired. Given that situation, it would also be possible to get the velocities of
the other robots by differentiating their last known positions (we also validated this in our
experiments). Since in this case, the accuracy will most likely decrease in some situations
(also see Sec. 4), we, therefore, recommend using the real velocity data if available.

Since the measurement frequency of LiDAR systems is usually lower than the mea-
surement frequency of the wheel encoders (in our 12Hz vs. 50 Hz), we suggest a sensor
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Fig. 7 Travel distance estimation to eliminate poses too far apart

fusion using an EKF. Our implementation is based on the robot_pose_ekf3 package
using a plugin made for GPS signals to update the prediction with the localization from our
algorithm. As sensor data fusion with an EKF has already been covered extensively in the
literature Khatib et al. [21]Eman and Ramdane [22]Huang et al. [14], we do not want to
elaborate on it any further in this publication.

4 Evaluation

As mentioned before, we are using the MiR 200 industrial robot for the evaluation of our
algorithm. In the first experiment (scenario I) we used two of these robots in our laboratory.
To get an impression of the achievable accuracy, in this experiment, we only move one of the
two robots and measure its position via the LiDAR of the other robot. We then compare the
position estimated from our algorithm with a standard AMCL implementation. For AMCL,
we have used the existing implementation in the ROS navigation stack and parameterized
it manually to the best of our knowledge. In this scenario, we will not transfer any data
between the robots, so the velocity of the robot has to be derived from previous position
data. For reference, we use an external laser tracker to get the “true” relative position and
distance. Our Faro Vantage laser tracker provides 3-DOF position measurements with an
accuracy of under 0.1mm and a frequency of 1000Hz.

For the second experiment, we perform a simulation. This is necessary becausewewant to
investigate the behavior of the algorithm compared to AMCL in an environment with fewer
features. The simulation environment Gazebo also allows us to measure the true position
of all robots in real-time, which would not be possible in reality (due to a lack of sensors).
In the simulation, we will therefore be able to move both robots simultaneously and still
get their true positions. Besides, we now transfer the odometry data between both robots.
For the S300 laser scanners we are assuming a standard deviation of the noise of 29mm
for distances under 3m and 1% of the distance above 3m (according to the datasheet). The

3https://github.com/ros-planning/robot_pose_ekf.
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encoders are modeled with a noise equal to 1% of the current velocity. Again we will try
to estimate the pose of both robots using AMCL and the direct LiDAR-based detection we
described in this article.

When comparing the measured trajectories in Fig. 9 (a), it becomes apparent that for
the scenario I conventional distance estimation via AMCL is superior to the direct distance
measurement. Figure8 also confirms that in this case, both the average and maximum devi-
ation are lower, and the signal is less noisy. We assume that due to the very good map and
the high density of recognizable features in the surrounding area, localization via AMCL
is better suited to determine the relative position in this and similar cases. By combining
odometry and LiDAR, the AMCL can also compensate most of the noise for an individual
robot. Since, in this scenario, we did not transfer the odometry data between robots, we can
not use the EKF to reduce the noise in the LiDAR data for our algorithm. As a result, we
recognize that applying the presented algorithm does not make sense under the condition
of a good map and many features in the environment. Therefore, in the following, we test
our algorithm under the assumption that the map is known poorly, or only a few features are
available for localization via AMCL.

Fig. 8 Scenario I: One real robot moving - one real robot recording

In the second scenario, our robots are starting close to three landmarks in an otherwise
empty environment. The robots then move along an oval trajectory around those landmarks.
You can see this in Fig. 9 (b). Since the AMCL has significantly fewer features available,
the localization and thus the determination of the relative position is less accurate. This
is especially apparent in Fig. 10 (a), where starting at 30 s, two of the landmarks are par-
tially covered by the second robot. Since the localization via AMCL is based exclusively
on odometry without a line-of-sight connection to known features, the error temporarily
doubles.

However, this experiment also shows a weakness in our proposed method: If the angle
between the two robots is a multiple of 90 degrees (e.g., the robots are moving side by side),
only one side of the other robot is detected. This is also visible in Fig. 10 (18 sec to 25 sec).
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Fig. 9 Global trajectories for scenario I and II

Since no corner can be identified in the contour, the determination of the start- and endpoint
of the robot is subject to greater uncertainty. Also, in some cases, there is a slight delay
between measured and real position, which also has a negative influence on the error. This
delay occurs when the computer of our robot is busy with another process, and the necessary
calculations are not completed in time. In general, we can still calculate a new position with
every new LiDARmeasurement, which averages to about 12,8 Hz on an Intel Core i7 8700k
with 16 Gb of RAM using a Preempt-RT Linux Kernel (5.9.1-rt20).4 Overall our method
does provide some benefits, especially in environments with only a few landmarks.

Fig. 10 Scenario II: Both simulated robots are moving - robot one measures robot 2

4In normal operation the processor is not fully utilized by the algorithm. Only in the case that a real
time process occupies the processor the computing time cannot be kept.
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5 Conclusion and FutureWork

In this paper, we introduced an improved method for the estimation of relative position for
multi-robot formation control. We then compared the performance and applicability of this
method to another standard method for relative robot localization. Although our algorithm
does not always achieve better results, there is a clear area of application. Additionally, in all
cases we studied, we did not require any form of communication or map for the algorithm
to function. In the future, we plan on improving the algorithm regarding computing time.
This could be done, for example, by first estimating the new robot position and, based on
this estimation, removing distant objects from the measured data. Also, we will analyse
more edge cases like two robots getting extremely close to each other. Another interesting
aspect is the combination/fusion of different localization methods. As our method shows
advantages in certain scenarios and AMCL in others, we plan to combine both algorithms
to generate a more robust localization.
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