55 research outputs found

    Optimal culture conditions for neurosphere formation and neuronal differentiation from human dental pulp stem cells

    Get PDF
    Objectives: Human dental pulp stem cells (DPSCs) have been used to regenerate damaged nervous tissues. However, the methods of committing DPSCs into neural stem/progenitor cells (NSPCs) or neurospheres are highly diverse, resulting in many neuronal differentiation outcomes. This study aims to validate an optimal protocol for inducing DPSCs into neurospheres and neurons. Methodology: After isolation and characterization of mesenchymal stem cell identity, DPSCs were cultured in a NSPC induction medium and culture vessels. The durations of the culture, dissociation methods, and passage numbers of DPSCs were varied. Results: Neurosphere formation requires a special surface that inhibits cell attachment. Five-days was the most appropriate duration for generating proliferative neurospheres and they strongly expressed Nestin, an NSPC marker. Neurosphere reformation after being dissociated by the Accutase enzyme was significantly higher than other methods. Passage number of DPSCs did not affect neurosphere formation, but did influence neuronal differentiation. We found that the cells expressing a neuronal marker, β-tubulin III, and exhibiting neuronal morphology were significantly higher in the early passage of the DPSCs. Conclusion: These results suggest a guideline to obtain a high efficiency of neurospheres and neuronal differentiation from DPSCs for further study and neurodegeneration therapeutics

    Odontogenic gene expression profile of human dental pulp-derived cells under high glucose influence: a microarray analysis

    Get PDF
    Hyperglycemia, a major characteristic of diabetes, is considered to play a vital role in diabetic complications. High glucose levels have been found to inhibit the mineralization of dental pulp cells. However, gene expression associated with this phenomenon has not yet been reported. This is important for future dental therapeutic application. Objective: Our study aimed to investigate the effect of high glucose levels on mineralization of human dental pulp-derived cells (hDPCs) and identify the genes involved. Methodology: hDPCs were cultured in mineralizing medium containing 25 or 5.5 mM D-glucose. On days 1 and 14, RNA was extracted and expression microarray performed. Then, differentially expressed genes (DEGs) were selected for further validation using the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method. Cells were fixed and stained with alizarin red on day 21 to detect the formation of mineralized nodules, which was further quantified by acetic acid extraction. Results: Comparisons between high-glucose and low-glucose conditions showed that on day 1, there were 72 significantly up-regulated and 75 down-regulated genes in the high-glucose condition. Moreover, 115 significantly up- and 292 down-regulated genes were identified in the high-glucose condition on day 14. DEGs were enriched in different GO terms and pathways, such as biological and cellular processes, metabolic pathways, cytokine–cytokine receptor interaction and AGE-RAGE signaling pathways. RT-qPCR results confirmed the significant expression of pyruvate dehydrogenase kinase 3 (PDK3), cyclin-dependent kinase 8 (CDK8), activating transcription factor 3 (ATF3), fibulin-7 (Fbln-7), hyaluronan synthase 1 (HAS1), interleukin 4 receptor (IL-4R) and apolipoprotein C1 (ApoC1). Conclusions: The high-glucose condition significantly inhibited the mineralization of hDPCs. DEGs were identified, and interestingly, HAS1 and Fbln-7 genes may be involved in the glucose inhibitory effect on hDPC mineralization

    Stem cell-derived exosomes from human exfoliated deciduous teeth promote angiogenesis in hyperglycemic-induced human umbilical vein endothelial cells

    Get PDF
    Objective: To investigate the angiogenesis in human umbilical vein endothelial cells (HUVEC) under high glucose concentration, treated with exosomes derived from stem cells from human exfoliated deciduous teeth (SHED). Methodology: SHED-derived exosomes were isolated by differential centrifugation and were characterized by nanoparticle tracking analysis, transmission electron microscopy, and flow cytometric assays. We conducted in vitro experiments to examine the angiogenesis in HUVEC under high glucose concentration. Cell Counting Kit-8, migration assay, tube formation assay, quantitative real-time PCR, and immunostaining were performed to study the role of SHED-derived exosomes in cell proliferation, migration, and angiogenic activities. Results: The characterization confirmed SHED-derived exosomes: size ranged from 60–150 nm with a mode of 134 nm, cup-shaped morphology, and stained positively for CD9, CD63, and CD81. SHED-exosome significantly enhanced the proliferation and migration of high glucose-treated HUVEC. A significant reduction was observed in tube formation and a weak CD31 staining compared to the untreated-hyperglycemic-induced group. Interestingly, exosome treatment improved tube formation qualitatively and demonstrated a significant increase in tube formation in the covered area, total branching points, total tube length, and total loop parameters. Moreover, SHED-exosome upregulates angiogenesis-related factors, including the GATA2 gene and CD31 protein. Conclusions: Our data suggest that the use of SHED-derived exosomes potentially increases angiogenesis in HUVEC under hyperglycemic conditions, which includes increased cell proliferation, migration, tubular structures formation, GATA2 gene, and CD31 protein expression. SHED-exosome usage may provide a new treatment strategy for periodontal patients with diabetes mellitus

    Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer

    Get PDF
    SummaryReprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.PaperCli

    Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation

    Get PDF
    The crosstalk between the epiblast and the trophoblast is critical in supporting the early stages of conceptus development. FGF4 and BMP4 are inductive signals that participate in the communication between the epiblast and the extraembryonic ectoderm (ExE) of the developing mouse embryo. Importantly, however, it is unknown whether a similar crosstalk operates in species that lack a discernible ExE and develop a mammotypical embryonic disc (ED). Here we investigated the crosstalk between the epiblast and the trophectoderm (TE) during pig embryo elongation. FGF4 ligand and FGFR2 were detected primarily on the plasma membrane of TE cells of peri-elongation embryos. The binding of this growth factor to its receptor triggered a signal transduction response evidenced by an increase in phosphorylated MAPK/ERK. Particular enrichment was detected in the periphery of the ED in early ovoid embryos, indicating that active FGF signalling was operating during this stage. Gene expression analysis shows that CDX2 and ELF5, two genes expressed in the mouse ExE, are only co-expressed in the Rauber's layer, but not in the pig mural TE. Interestingly, these genes were detected in the nascent mesoderm of early gastrulating embryos. Analysis of BMP4 expression by in situ hybridisation shows that this growth factor is produced by nascent mesoderm cells. A functional test in differentiating epiblast shows that CDX2 and ELF5 are activated in response to BMP4. Furthermore, the effects of BMP4 were also demonstrated in the neighbouring TE cells, as demonstrated by an increase in phosphorylated SMAD1/5/8. These results show that BMP4 produced in the extraembryonic mesoderm is directly influencing the SMAD response in the TE of elongating embryos. These results demonstrate that paracrine signals from the embryo, represented by FGF4 and BMP4, induce a response in the TE prior to the extensive elongation. The study also confirms that expression of CDX2 and ELF5 is not conserved in the mural TE, indicating that although the signals that coordinate conceptus growth are similar between rodents and pigs, the gene regulatory network of the trophoblast lineage is not conserved in these species

    Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions

    Get PDF
    Parthenogenetic embryos are one attractive alternative as a source of embryonic stem cells, although many aspects related to the biology of parthenogenetic embryos and parthenogenetically derived cell lines still need to be elucidated. The present work was conducted to investigate the gene expression profile of rabbit parthenote embryos cultured under in vivo conditions using microarray analysis. Transcriptomic profiles indicate 2541 differentially expressed genes between parthenotes and normal in vivo fertilised blastocysts, of which 76 genes were upregulated and 16 genes downregulated in in vivo cultured parthenote blastocyst, using 3 fold-changes as a cut-off. While differentially upregulated expressed genes are related to transport and protein metabolic process, downregulated expressed genes are related to DNA and RNA binding. Using microarray data, 6 imprinted genes were identified as conserved among rabbits, humans and mice: GRB10, ATP10A, ZNF215, NDN, IMPACT and SFMBT2. We also found that 26 putative genes have at least one member of that gene family imprinted in other species. These data strengthen the view that a large fraction of genes is differentially expressed between parthenogenetic and normal embryos cultured under the same conditions and offer a new approach to the identification of imprinted genes in rabbit. © 2012 Naturil-Alfonso et al.This work was supported by Generalitat Valenciana research programme (Prometeo 2009/125). Carmen Naturil was supported by Generalitat Valenciana research programme (Prometeo 2009/125). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Naturil Alfonso, C.; Saenz De Juano Ribes, MDLD.; Peñaranda, D.; Vicente Antón, JS.; Marco Jiménez, F. (2012). Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions. PLoS ONE. 7(12):1-11. https://doi.org/10.1371/journal.pone.0051271S111712Harness, J. V., Turovets, N. A., Seiler, M. J., Nistor, G., Altun, G., Agapova, L. S., … Keirstead, H. S. (2011). Equivalence of Conventionally-Derived and Parthenote-Derived Human Embryonic Stem Cells. PLoS ONE, 6(1), e14499. doi:10.1371/journal.pone.0014499Lu, Z., Zhu, W., Yu, Y., Jin, D., Guan, Y., Yao, R., … Zhou, Q. (2010). Derivation and long-term culture of human parthenogenetic embryonic stem cells using human foreskin feeders. Journal of Assisted Reproduction and Genetics, 27(6), 285-291. doi:10.1007/s10815-010-9408-5Koh, C. J., Delo, D. M., Lee, J. W., Siddiqui, M. M., Lanza, R. P., Soker, S., … Atala, A. (2009). Parthenogenesis-derived multipotent stem cells adapted for tissue engineering applications. Methods, 47(2), 90-97. doi:10.1016/j.ymeth.2008.08.002Vrana, K. E., Hipp, J. D., Goss, A. M., McCool, B. A., Riddle, D. R., Walker, S. J., … Cibelli, J. B. (2003). Nonhuman primate parthenogenetic stem cells. Proceedings of the National Academy of Sciences, 100(Supplement 1), 11911-11916. doi:10.1073/pnas.2034195100Chen, Z., Liu, Z., Huang, J., Amano, T., Li, C., Cao, S., … Liu, L. (2009). Birth of Parthenote Mice Directly from Parthenogenetic Embryonic Stem Cells. Stem Cells, 27(9), 2136-2145. doi:10.1002/stem.158Sritanaudomchai, H., Ma, H., Clepper, L., Gokhale, S., Bogan, R., Hennebold, J., … Mitalipov, S. (2010). Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Human Reproduction, 25(8), 1927-1941. doi:10.1093/humrep/deq144Fang, Z. F., Gai, H., Huang, Y. Z., Li, S. G., Chen, X. J., Shi, J. J., … Sheng, H. Z. (2006). Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Experimental Cell Research, 312(18), 3669-3682. doi:10.1016/j.yexcr.2006.08.013Wang, S., Tang, X., Niu, Y., Chen, H., Li, B., Li, T., … Ji, W. (2007). Generation and Characterization of Rabbit Embryonic Stem Cells. Stem Cells, 25(2), 481-489. doi:10.1634/stemcells.2006-0226Piedrahita, J. A., Anderson, G. B., & BonDurant, R. H. (1990). On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology, 34(5), 879-901. doi:10.1016/0093-691x(90)90559-cNaturil-Alfonso, C., Saenz-de-Juano, M. D., Peñaranda, D. S., Vicente, J. S., & Marco-Jiménez, F. (2011). Parthenogenic blastocysts cultured under in vivo conditions exhibit proliferation and differentiation expression genes similar to those of normal embryos. Animal Reproduction Science, 127(3-4), 222-228. doi:10.1016/j.anireprosci.2011.08.005Besenfelder, U., Strouhal, C., & Brem, G. (1998). A Method for Endoscopic Embryo Collection and Transfer in the Rabbit. Journal of Veterinary Medicine Series A, 45(1-10), 577-579. doi:10.1111/j.1439-0442.1998.tb00861.xMehaisen, G. M. K., Viudes-de-Castro, M. P., Vicente, J. S., & Lavara, R. (2006). In vitro and in vivo viability of vitrified and non-vitrified embryos derived from eCG and FSH treatment in rabbit does. Theriogenology, 65(7), 1279-1291. doi:10.1016/j.theriogenology.2005.08.007Bilodeau-Goeseels, S., & Schultz, G. A. (1997). Changes in Ribosomal Ribonucleic Acid Content Within in Vitro-produced Bovine Embryos1. Biology of Reproduction, 56(5), 1323-1329. doi:10.1095/biolreprod56.5.1323Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207Weltzien, F.-A., Pasqualini, C., Vernier, P., & Dufour, S. (2005). A quantitative real-time RT-PCR assay for European eel tyrosine hydroxylase. General and Comparative Endocrinology, 142(1-2), 134-142. doi:10.1016/j.ygcen.2004.12.019Llobat, L., Marco-Jiménez, F., Peñaranda, D., Saenz-de-Juano, M., & Vicente, J. (2011). Effect of Embryonic Genotype on Reference Gene Selection for RT-qPCR Normalization. Reproduction in Domestic Animals, 47(4), 629-634. doi:10.1111/j.1439-0531.2011.01934.xLiu, N., Enkemann, S. A., Liang, P., Hersmus, R., Zanazzi, C., Huang, J., … Liu, L. (2010). Genome-wide Gene Expression Profiling Reveals Aberrant MAPK and Wnt Signaling Pathways Associated with Early Parthenogenesis. Journal of Molecular Cell Biology, 2(6), 333-344. doi:10.1093/jmcb/mjq029Abdoon, A. S., Ghanem, N., Kandil, O. M., Gad, A., Schellander, K., & Tesfaye, D. (2012). cDNA microarray analysis of gene expression in parthenotes and in vitro produced buffalo embryos. Theriogenology, 77(6), 1240-1251. doi:10.1016/j.theriogenology.2011.11.004Labrecque, R., & Sirard, M.-A. (2011). Gene expression analysis of bovine blastocysts produced by parthenogenic activation or fertilisation. Reproduction, Fertility and Development, 23(4), 591. doi:10.1071/rd10243Rizos, D., Clemente, M., Bermejo-Alvarez, P., de La Fuente, J., Lonergan, P., & Gutiérrez-Adán, A. (2008). Consequences ofIn VitroCulture Conditions on Embryo Development and Quality. Reproduction in Domestic Animals, 43, 44-50. doi:10.1111/j.1439-0531.2008.01230.xLonergan, P., Rizos, D., Kanka, J., Nemcova, L., Mbaye, A., Kingston, M., … Boland, M. (2003). Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality. Reproduction, 337-346. doi:10.1530/rep.0.1260337Memili, E., & First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote, 8(1), 87-96. doi:10.1017/s0967199400000861Latham, K. E. (2001). Embryonic genome activation. Frontiers in Bioscience, 6(3), d748-759. doi:10.2741/a639Niemann, H., & Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: Implications for subsequent development. Theriogenology, 53(1), 21-34. doi:10.1016/s0093-691x(99)00237-xCorcoran, D., Fair, T., Park, S., Rizos, D., Patel, O. V., Smith, G. W., … Lonergan, P. (2006). Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduction, 131(4), 651-660. doi:10.1530/rep.1.01015Morison, I. M., Ramsay, J. P., & Spencer, H. G. (2005). A census of mammalian imprinting. Trends in Genetics, 21(8), 457-465. doi:10.1016/j.tig.2005.06.008Bischoff, S. R., Tsai, S., Hardison, N., Motsinger-Reif, A. A., Freking, B. A., Nonneman, D., … Piedrahita, J. A. (2009). Characterization of Conserved and Nonconserved Imprinted Genes in Swine1. Biology of Reproduction, 81(5), 906-920. doi:10.1095/biolreprod.109.078139Cruz-Correa, M., Zhao, R., Oveido, M., Bernabe, R. D., Lacourt, M., Cardona, A., … Giardiello, F. M. (2009). Temporal stability and age-related prevalence of loss of imprinting of the insulin-like growth factor-2 gene. Epigenetics, 4(2), 114-118. doi:10.4161/epi.4.2.7954Park, C.-H., Uh, K.-J., Mulligan, B. P., Jeung, E.-B., Hyun, S.-H., Shin, T., … Lee, C.-K. (2011). Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos. PLoS ONE, 6(7), e22216. doi:10.1371/journal.pone.0022216Thurston, A., Taylor, J., Gardner, J., Sinclair, K. D., & Young, L. E. (2007). Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage. Reproduction, 135(1), 29-40. doi:10.1530/rep-07-0211Li, Y., & Sasaki, H. (2011). Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Research, 21(3), 466-473. doi:10.1038/cr.2011.15Mamo, S., Gal, A., Polgar, Z., & Dinnyes, A. (2008). Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Molecular Biology, 9(1), 67. doi:10.1186/1471-2199-9-67Navarrete Santos, A., Tonack, S., Kirstein, M., Pantaleon, M., Kaye, P., & Fischer, B. (2004). Insulin acts via mitogen-activated protein kinase phosphorylation in rabbit blastocysts. Reproduction, 128(5), 517-526. doi:10.1530/rep.1.0020

    Angiogenic effect of SHED-derived exosomes on hyperglycemia-induced endothelial cells

    No full text
    Aim or Purpose: This study aimed to investigate the angiogenesis of hyperglycemia-induced human umbilical vein endothelial cells (HUVEC) treated with SHED exosomes. Materials and Methods: SHED exosomes were extracted by differential centrifugation and then were characterized by nanoparticle tracking analysis, transmission electron microscope, and flow cytometry, for exosome size, ultrastructure, and for presence of exosome specific surface markers: CD9, CD63 and CD81, respectively. HUVEC was subjected to treatments with normal glucose level (5.5 mM), positive control group, and hyperglycemic level (25 mM). Afterwards, hyperglycemia-induced HUVEC was cultured with SHED exosomes. Through tube formation assay, reverse transcriptase polymerase chain reaction (RT-PCR) with GATA2, an angiogenic gene, and immunostaining of CD31, a vascular marker, the angiogenic potential of HUVEC was identified. Results: The characterization confirmed SHED exosomes: size ranged from 44-291 nm with mode of 133 nm, cup-shaped morphology and expressed CD9, CD63, and CD81. In comparison with the hyperglycemia-induced group, exosome treatment resulted in improved tube formation qualitatively, and exhibited statistically significantly (p<0.05) increased tube formation in the covered area, total branching points, total tube length and total loops. At 12 hours, there were improved expression of GATA2 and higher expression of CD31 in the exosome treated group in comparison to the hyperglycemia-induced group. Conclusions: SHED exosomes have the capability to enhance angiogenesis in hyperglycemia-induced endothelial cells. As a result, usage of SHED exosomes could offer a promising alternative for periodontal tissue regeneration for diabetic patients with periodontitis
    • …
    corecore