416 research outputs found

    Neutron Star Superfluidity, Dynamics and Precession

    Full text link
    Basic rotational and magnetic properties of neutron superfluids and proton superconductors in neutron stars are reviewed. The modes of precession of the neutron superfluid are discussed in detail. We emphasize that at finite temperature, pinning of superfluid vortices does not offer any constraint on the precession. Any pinning energies can be surmounted by thermal activation and there exists a dynamical steady state in which the superfluid follows the precession of the crust at a small lag angle between the crust and superfluid rotation velocity vectors. At this small lag the system is far from the critical conditions for unpinning, even if the observed precession of the crust may entail a large angle between the figure axis and the crust's rotation velocity vector. We conclude that if long period modulations of pulse arrival times and pulse shapes observed in a pulsar like the PSR B1828-11 are due to the precession of the neutron star, this does not have any binding implications about the existence of pinning by flux lines or the existence of Type II superconductivity in the neutron star.Comment: 21 pages, one figure, to appear in the Proceedings of the NATO-ASI "The Electromagnetic Spectrum of Neutron Stars" held in Marmaris, Turkey, June 2004, eds. A. Baykal, S.K. Yerli, C. Inam and S. Grebene

    Robust deconvolution of high-frequency ultrasound images using higher-order spectral analysis and wavelets

    Full text link

    An Intrusion Detection Using Machine Learning Algorithm Multi-Layer Perceptron (MlP): A Classification Enhancement in Wireless Sensor Network (WSN)

    Get PDF
    During several decades, there has been a meteoric rise in the development and use of cutting-edge technology. The Wireless Sensor Network (WSN) is a groundbreaking innovation that relies on a vast network of individual sensor nodes. The sensor nodes in the network are responsible for collecting data and uploading it to the cloud. When networks with little resources are deployed harshly and without regulation, security risks occur. Since the rate at which new information is being generated is increasing at an exponential rate, WSN communication has become the most challenging and complex aspect of the field. Therefore, WSNs are insecure because of this. With so much riding on WSN applications, accuracy in replies is paramount. Technology that can swiftly and continually analyse internet data streams is essential for spotting breaches and assaults. Without categorization, it is hard to simultaneously reduce processing time while maintaining a high level of detection accuracy. This paper proposed using a Multi-Layer Perceptron (MLP) to enhance the classification accuracy of a system. The proposed method utilises a feed-forward ANN model to generate a mapping for the training and testing datasets using backpropagation. Experiments are performed to determine how well the proposed MLP works. Then, the results are compared to those obtained by using the Hoeffding adaptive tree method and the Restricted Boltzmann Machine-based Clustered-Introduction Detection System. The proposed MLP achieves 98% accuracy, which is higher than the 96.33% achieved by the RBMC-IDS and the 97% accuracy achieved by the Hoeffding adaptive tree

    The boson peak in structural and orientational glasses of simple alcohols: Specific heat at low temperatures

    Full text link
    We review in this work specific-heat experiments, that we have conducted on different hydrogen-bonded glasses during last years. Specifically, we have measured the low-temperature specific heat Cp for a set of glassy alcohols: normal and fully-deuterated ethanol, 1- and 2- propanol, and glycerol. Ethanol exhibits a very interesting polymorphism presenting three different solid phases at low temperature: a fully-ordered (monoclinic) crystal, an orientationally-disordered (cubic) crystal or 'orientational glass', and the ordinary structural glass. By measuring and comparing the low-temperature specific heat of the three phases, in the 'boson peak' range 2-10 K as well as in the tunneling-states range below 1K, we are able to provide a quantitative confirmation that ''glassy behavior'' is not an exclusive property of amorphous solids. On the other hand, propanol is the simplest monoalcohol with two different stereoisomers (1- and 2-propanol), what allows us to study directly the influence of the spatial rearrangement of atoms on the universal properties of glasses. We have measured the specific heat of both isomers, finding a noteworthy quantitative difference between them. Finally, low-temperature specific-heat data of glassy glycerol have also been obtained. Here we propose a simple method based upon the soft-potential model to analyze low-temperature specific-heat measurements, and we use this method for a quantitative comparison of all these data of glassy alcohols and as a stringent test of several universal correlations and scaling laws suggested in the literature. In particular, we find that the interstitialcy model for the boson peak [A. V. Granato, Phys. Rev. Lett. 68 (1992) 974] gives a very good account of the temperature at which the maximum in Cp/T^3 occurs.Comment: 16 pages, 2 figures, Proceedings of the 4th International Discussion Meeting on Relaxations in Complex Systems, Hersonissos (Crete), June 2001. Journal of Non-Crystalline Solids (accepted for publication

    Dissecting DNA repair in adult high grade gliomas for patient stratification in the post-genomic era

    Get PDF
    Deregulation of multiple DNA repair pathways may contribute to aggressive biology and therapy resistance in gliomas. We evaluated transcript levels of 157 genes involved in DNA repair in an adult glioblastoma Test set (n=191) and validated in ‘The Cancer Genome Atlas’ (TCGA) cohort (n=508). A DNA repair prognostic index model was generated. Artificial neural network analysis (ANN) was conducted to investigate global gene interactions. Protein expression by immunohistochemistry was conducted in 61 tumours. A fourteen DNA repair gene expression panel was associated with poor survival in Test and TCGA cohorts. A Cox multivariate model revealed APE1, NBN, PMS2, MGMT and PTEN as independently associated with poor prognosis. A DNA repair prognostic index incorporating APE1, NBN, PMS2, MGMT and PTEN stratified patients in to three prognostic sub-groups with worsening survival. APE1, NBN, PMS2, MGMT and PTEN also have predictive significance in patients who received chemotherapy and/or radiotherapy. ANN analysis of APE1, NBN, PMS2, MGMT and PTEN revealed interactions with genes involved in transcription, hypoxia and metabolic regulation. At the protein level, low APE1 and low PTEN remain associated with poor prognosis. In conclusion, multiple DNA repair pathways operate to influence biology and clinical outcomes in adult high grade gliomas

    Larval fish dispersal in a coral-reef seascape

    Get PDF
    Free to read at publisher's site. Larval dispersal is a critical yet enigmatic process in the persistence and productivity of marine metapopulations. Empirical data on larval dispersal remain scarce, hindering the use of spatial management tools in efforts to sustain ocean biodiversity and fisheries. Here we document dispersal among subpopulations of clownfish (Amphiprion percula) and butterflyfish (Chaetodon vagabundus) from eight sites across a large seascape (10,000 km(2)) in Papua New Guinea across 2 years. Dispersal of clownfish was consistent between years, with mean observed dispersal distances of 15 km and 10 km in 2009 and 2011, respectively. A Laplacian statistical distribution (the dispersal kernel) predicted a mean dispersal distance of 13-19 km, with 90% of settlement occurring within 31-43 km. Mean dispersal distances were considerably greater (43-64 km) for butterfly-fish, with kernels declining only gradually from spawning locations. We demonstrate that dispersal can be measured on spatial scales sufficient to inform the design of and test the performance of marine reserve networks

    Coulomb gap in a model with finite charge transfer energy

    Full text link
    The Coulomb gap in a donor-acceptor model with finite charge transfer energy Δ\Delta describing the electronic system on the dielectric side of the metal-insulator transition is investigated by means of computer simulations on two- and three-dimensional finite samples with a random distribution of equal amounts of donor and acceptor sites. Rigorous relations reflecting the symmetry of the model presented with respect to the exchange of donors and acceptors are derived. In the immediate neighborhood of the Fermi energy μ\mu the the density of one-electron excitations g(ϵ)g(\epsilon) is determined solely by finite size effects and g(ϵ)g(\epsilon) further away from μ\mu is described by an asymmetric power law with a non-universal exponent, depending on the parameter Δ\Delta.Comment: 10 pages, 6 figures, submitted to Phys. Rev.

    Are the magnetic fields of millisecond pulsars ~ 10^8 G?

    Full text link
    It is generally assumed that the magnetic fields of millisecond pulsars (MSPs) are ∼108\sim 10^{8}G. We argue that this may not be true and the fields may be appreciably greater. We present six evidences for this: (1) The ∼108\sim 10^{8} G field estimate is based on magnetic dipole emission losses which is shown to be questionable; (2) The MSPs in low mass X-ray binaries (LMXBs) are claimed to have <1011< 10^{11} G on the basis of a Rayleygh-Taylor instability accretion argument. We show that the accretion argument is questionable and the upper limit 101110^{11} G may be much higher; (3) Low magnetic field neutron stars have difficulty being produced in LMXBs; (4) MSPs may still be accreting indicating a much higher magnetic field; (5) The data that predict ∼108\sim 10^{8} G for MSPs also predict ages on the order of, and greater than, ten billion years, which is much greater than normal pulsars. If the predicted ages are wrong, most likely the predicted ∼108\sim 10^{8} G fields of MSPs are wrong; (6) When magnetic fields are measured directly with cyclotron lines in X-ray binaries, fields ≫108\gg 10^{8} G are indicated. Other scenarios should be investigated. One such scenario is the following. Over 85% of MSPs are confirmed members of a binary. It is possible that all MSPs are in large separation binaries having magnetic fields >108> 10^{8} G with their magnetic dipole emission being balanced by low level accretion from their companions.Comment: 16 pages, accept for publication in Astrophysics and Space Scienc

    Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1) as a key biomarker in breast and ovarian cancer

    Get PDF
    FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. FEN1 mRNA overexpression was highly significantly associated with high grade (p= 4.89 x 10 - 57) , high mitotic index (p= 5.25 x 10 - 28), pleomorphism (p= 6.31 x 10-19), ER negative (p= 9.02 x 10-35 ), PR negative (p= 9.24 x 10-24 ), triple negative phenotype (p= 6.67 x 10-21) , PAM50.Her2 (p=5.19 x 10-13 ), PAM50.Basal (p=2.7 x 10-41), PAM50.LumB (p=1.56 x 10-26), integrative molecular cluster 1 (intClust.1) ( p=7.47 x 10-12), intClust.5 (p=4.05 x 10-12) and intClust. 10 (p=7.59 x 10-38 ) breast cancers. FEN1 mRNA overexpression is associated with poor breast cancer specific survival in univariate (p=4.4 x 10-16) and multivariate analysis (p=9.19 x 10-7). At the protein level, in ER positive tumours , FEN1 overexpression remains significantly linked to high grade, high mitotic index and pleomorphism (ps< 0.01). In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression (ps<0.05). In ER positive as well as in ER negative tumours, FEN1 protein over expression is associated with poor survival in univariate and multivariate analysis (ps<0.01). In ovarian epithelial cancers , similarly, FEN1 overexpression is associated with high grade, high stage and poor survival (ps<0.05). We conclude that FEN1 is a promising biomarker in breast and ovarian epithelial cancer

    Transcriptomic and Protein Expression Analysis Reveals Clinicopathological Significance of Bloom Syndrome Helicase (BLM) in Breast Cancer

    Get PDF
    BLM has key roles in homologous recombination repair, telomere maintenance and DNA replication. Germ-line mutation in the BLM gene causes Bloom’s syndrome, a rare disorder characterised by premature aging and predisposition to multiple cancers including breast cancer. The clinicopathological significance of BLM in sporadic breast cancers is unknown. We investigated BLM mRNA expression in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n=1950) and validated in an external dataset of 2413 tumours. BLM protein level was evaluated in the Nottingham Tenovus series comprising 1650 breast tumours. High BLM mRNA expression was highly significantly associated with high histological grade, larger tumour size, ER negative, PgR negative and triple negative phenotypes (ps<0.0001). High BLM mRNA expression was also linked to aggressive molecular phenotypes including PAM50.Her2 (p<0.0001), PAM50.Bas al (p<0.0001) and PAM50.LumB (p<0.0001) and Genufu subtype (ER+/Her2-/High proliferation) (p<0.0001). PAM50.LumA tumours and Genufu subtype (ER+/Her2-/low proliferation) were more likely to express low levels of BLM mRNA (ps<0.0001). Integrative molecular clusters (intClust) intClust.1 (p<0.0001), intClust.5 (p<0.0001), intClust.9 (p<0.0 001) and intClust.10 (p<0.0001) were also more likely in tumours with high BLM mRNA expression. High BLM mRNA expression was associated with poor breast cancer specific survival (BCSS) (ps<0.000001). At the protein level, altered sub-cellular localisation with high cytoplasmic BLM and low nuclear BLM was linked to aggressive phenotypes. In multivariate analysis, BLM mRNA and BLM protein levels independently influenced BCSS ( p=0.03). This is the first and the largest study to provide evidence that BLM is a promising biomarker in breast cancer
    • …
    corecore