65 research outputs found

    How is inclusiveness in health systems research priority-setting affected when community organizations lead the process?

    Get PDF
    Community engagement is gaining prominence in health research. But communities rarely have a say in the agendas or conduct of the very health research projects that aim to help them. One way thought to achieve greater inclusion for communities throughout health research projects, including during priority-setting, is for researchers to partner with community organizations (COs). This paper provides initial empirical evidence as to the complexities such partnerships bring to priority-setting practice. Case study research was undertaken on a three-stage CO-led priority-setting process for health systems research. The CO was the Zilla Budakattu Girijana Abhivrudhhi Sangha, a district-level community development organization representing the Soliga people in Karnataka, India. Data on the priority-setting process were collected in 2018 and 2019 through in-depth interviews with researchers, Sangha leaders and field investigators from the Soliga community who collected data as part of the priority-setting process. Direct observation and document collection were also performed, and data from all three sources were thematically analysed. The case study demonstrates that, when COs lead health research priority-setting, their strengths and weaknesses in terms of representation and voice will affect inclusion at each stage of the priority-setting process. CO strengths can deepen inclusion by the CO and its wider community. CO weaknesses can create limitations for inclusion if not mitigated, exacerbating or reinforcing the very hierarchies that impede the achievement of improved health outcomes, e.g. exclusion of women in decision-making processes related to their health. Based on these findings, recommendations are made to support the achievement of inclusive CO-led health research priority-setting processes

    Beyond behaviour as individual choice: a call to expand understandings around social science in health research

    Get PDF
    The focus of behavioural sciences in shaping behaviour of individuals and populations is well documented. Research and practice insights from behavioural sciences improve our understanding of how people make choices that in turn determine their health, and in turn the health of the population. However, we argue that an isolated focus on behaviour - which is one link in a chain from macro to the micro interventions - is not in sync with the public health approach which per force includes a multi-level interest. The exclusive focus on behaviour manipulation then becomes a temporary solution at best and facilitator of reproduction of harmful structures at worst. Several researchers and policymakers have begun integrating insights from behavioural economics and related disciplines that explain individual choice, for example, by the establishment of Behavioural Insight Teams, or nudge units to inform the design and implementation of public health programs. In order to comprehensively improve public health, we discuss the limitations of an exclusive focus on behaviour change for public health advancement and call for an explicit integration of broader structural and population-level contexts, processes and factors that shape the lives of individuals and groups, health systems and differential health outcomes

    Predicting disease risk areas through co-production of spatial models: the example of Kyasanur Forest Disease in India’s forest landscapes

    Get PDF
    Zoonotic diseases affect resource-poor tropical communities disproportionately, and are linked to human use and modification of ecosystems. Disentangling the socio-ecological mechanisms by which ecosystem change precipitates impacts of pathogens is critical for predicting disease risk and designing effective intervention strategies. Despite the global “One Health” initiative, predictive models for tropical zoonotic diseases often focus on narrow ranges of risk factors and are rarely scaled to intervention programs and ecosystem use. This study uses a participatory, co-production approach to address this disconnect between science, policy and implementation, by developing more informative disease models for a fatal tick-borne viral haemorrhagic disease, Kyasanur Forest Disease (KFD), that is spreading across degraded forest ecosystems in India. We integrated knowledge across disciplines to identify key risk factors and needs with actors and beneficiaries across the relevant policy sectors, to understand disease patterns and develop decision support tools. Human case locations (2014–2018) and spatial machine learning quantified the relative role of risk factors, including forest cover and loss, host densities and public health access, in driving landscape-scale disease patterns in a long-affected district (Shivamogga, Karnataka State). Models combining forest metrics, livestock densities and elevation accurately predicted spatial patterns in human KFD cases (2014–2018). Consistent with suggestions that KFD is an “ecotonal” disease, landscapes at higher risk for human KFD contained diverse forest-plantation mosaics with high coverage of moist evergreen forest and plantation, high indigenous cattle density, and low coverage of dry deciduous forest. Models predicted new hotspots of outbreaks in 2019, indicating their value for spatial targeting of intervention. Co-production was vital for: gathering outbreak data that reflected locations of exposure in the landscape; better understanding contextual socio-ecological risk factors; and tailoring the spatial grain and outputs to the scale of forest use, and public health interventions. We argue this inter-disciplinary approach to risk prediction is applicable across zoonotic diseases in tropical settings

    ‘None of my ancestors ever discussed this disease before!’ How disease information shapes adaptive capacity of marginalised rural populations in India

    Get PDF
    Smallholder farmer and tribal communities are often characterised as marginalised and highly vulnerable to emerging zoonotic diseases due to their relatively poor access to healthcare, worse-off health outcomes, proximity to sources of disease risks, and their social and livelihood organisation. Yet, access to relevant and timely disease information that could strengthen their adaptive capacity remain challenging and poorly characterised in the empirical literature. This paper addresses this gap by exploring the role of disease information in shaping the adaptive capacity of smallholder farmer and tribal groups to Kyasanur Forest Disease (KFD), a tick-borne viral haemorrhagic fever. We carried out household surveys (n = 229) and in-depth interviews (n = 25) in two affected districts–Shimoga and Wayanad–in the Western Ghats region. Our findings suggest that, despite the generally limited awareness about KFD, access to disease information improved households’ propensity to implement adaptation strategies relative to households that had no access to it. Of the variety of adaptation strategies implemented, vaccination, avoiding forest visits, wearing of protective clothing and footwear, application of dimethyl phthalate (DMP) oil and income diversification were identified by respondents as important adaptive measures during the outbreak seasons. Even so, we identified significant differences between individuals in exposure to disease information and its contribution to substantive adaptive action. Households reported several barriers to implement adaptation strategies including, lack of disease information, low efficacy of existing vaccine, distrust, religio-cultural sentiments, and livelihood concerns. We also found that informal information sharing presented a promising avenue from a health extension perspective albeit with trade-offs with potential distortion of the messages through misinformation and/or reporting bias. Altogether, our findings stress the importance of contextualising disease information and implementing interventions in a participatory way that sufficiently addresses the social determinants of health in order to bolster households’ adaptive capacity to KFD and other neglected endemic zoonoses

    COVID-19 and informal settlements: An urgent call to rethink urban governance

    Get PDF
    While some countries are nearing or reaching their peak of coronavirus infections, others are only at what seems to be the early stages of the infection curve. Some of these countries, particularly in the Global South, contain some of the world’s largest informal and/or urban settlements and are low resource settings. Given that the last few months have shown us how quickly COVID-19 can push health systems to the brink or overwhelm them, even in high-income countries, it is worrying to think what would happen if the outbreak becomes severe in such contexts

    Co-production of knowledge as part of a OneHealth approach to better control zoonotic diseases

    Get PDF
    There is increased global and national attention on the need for effective strategies to control zoonotic diseases. Quick, effective action is, however, hampered by poor evidence-bases and limited coordination between stakeholders from relevant sectors such as public and animal health, wildlife and forestry sectors at different scales, who may not usually work together. The OneHealth approach recognises the value of cross-sectoral evaluation of human, animal and environmental health questions in an integrated, holistic and transdisciplinary manner to reduce disease impacts and/or mitigate risks. Co-production of knowledge is also widely advocated to improve the quality and acceptability of decision-making across sectors and may be particularly important when it comes to zoonoses. This paper brings together OneHealth and knowledge co-production and reflects on lessons learned for future OneHealth co-production processes by describing a process implemented to understand spill-over and identify disease control and mitigation strategies for a zoonotic disease in Southern India (Kyasanur Forest Disease). The co-production process aimed to develop a joint decision-support tool with stakeholders, and we complemented our approach with a simple retrospective theory of change on researcher expectations of the system-level outcomes of the co-production process. Our results highlight that while co-production in OneHealth is a difficult and resource intensive process, requiring regular iterative adjustments and flexibility, the beneficial outcomes justify its adoption. A key future aim should be to improve and evaluate the degree of inter-sectoral collaboration required to achieve the aims of OneHealth. We conclude by providing guidelines based on our experience to help funders and decision-makers support future co-production processes

    Ecological countermeasures to prevent pathogen spillover and subsequent pandemics

    Get PDF
    Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Improved risk stratification of patients with atrial fibrillation: an integrated GARFIELD-AF tool for the prediction of mortality, stroke and bleed in patients with and without anticoagulation.

    Get PDF
    OBJECTIVES: To provide an accurate, web-based tool for stratifying patients with atrial fibrillation to facilitate decisions on the potential benefits/risks of anticoagulation, based on mortality, stroke and bleeding risks. DESIGN: The new tool was developed, using stepwise regression, for all and then applied to lower risk patients. C-statistics were compared with CHA2DS2-VASc using 30-fold cross-validation to control for overfitting. External validation was undertaken in an independent dataset, Outcome Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). PARTICIPANTS: Data from 39 898 patients enrolled in the prospective GARFIELD-AF registry provided the basis for deriving and validating an integrated risk tool to predict stroke risk, mortality and bleeding risk. RESULTS: The discriminatory value of the GARFIELD-AF risk model was superior to CHA2DS2-VASc for patients with or without anticoagulation. C-statistics (95% CI) for all-cause mortality, ischaemic stroke/systemic embolism and haemorrhagic stroke/major bleeding (treated patients) were: 0.77 (0.76 to 0.78), 0.69 (0.67 to 0.71) and 0.66 (0.62 to 0.69), respectively, for the GARFIELD-AF risk models, and 0.66 (0.64-0.67), 0.64 (0.61-0.66) and 0.64 (0.61-0.68), respectively, for CHA2DS2-VASc (or HAS-BLED for bleeding). In very low to low risk patients (CHA2DS2-VASc 0 or 1 (men) and 1 or 2 (women)), the CHA2DS2-VASc and HAS-BLED (for bleeding) scores offered weak discriminatory value for mortality, stroke/systemic embolism and major bleeding. C-statistics for the GARFIELD-AF risk tool were 0.69 (0.64 to 0.75), 0.65 (0.56 to 0.73) and 0.60 (0.47 to 0.73) for each end point, respectively, versus 0.50 (0.45 to 0.55), 0.59 (0.50 to 0.67) and 0.55 (0.53 to 0.56) for CHA2DS2-VASc (or HAS-BLED for bleeding). Upon validation in the ORBIT-AF population, C-statistics showed that the GARFIELD-AF risk tool was effective for predicting 1-year all-cause mortality using the full and simplified model for all-cause mortality: C-statistics 0.75 (0.73 to 0.77) and 0.75 (0.73 to 0.77), respectively, and for predicting for any stroke or systemic embolism over 1 year, C-statistics 0.68 (0.62 to 0.74). CONCLUSIONS: Performance of the GARFIELD-AF risk tool was superior to CHA2DS2-VASc in predicting stroke and mortality and superior to HAS-BLED for bleeding, overall and in lower risk patients. The GARFIELD-AF tool has the potential for incorporation in routine electronic systems, and for the first time, permits simultaneous evaluation of ischaemic stroke, mortality and bleeding risks. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier for GARFIELD-AF (NCT01090362) and for ORBIT-AF (NCT01165710)
    corecore