140 research outputs found

    Constraining the Variation in Fine-Structure Constant Using SDSS DR8 QSO Spectra

    Full text link
    We report a robust constrain on the possible variation of fine-structure constant, alpha = e^2/(hbar*c), obtained using O III 4959,5007, nebular emission lines from QSOs. We find Delta-alpha/alpha=-(2.1 +/- 1.6) x 10^(-5) based on a well selected sample of 2347 QSOs from Sloan Digital Sky Survey Data Release 8 with 0.02 < z < 0.74. Our result is consistent with a non-varying alpha at a level of 2 x 10^(-5) over approximately 7 Gyr. This is the largest sample of extragalactic objects yet used to constrain the variation of alpha. While this constraint is not as stringent as those determined using many-multiplet method it is free from various systematic effects. A factor of ~ 4 improvement in Delta-alpha/alpha achieved here compared to the previous study (Bahcall et al. 2004) is just consistent with what is expected based on a factor of 14 times bigger sample used here. This suggests that errors are mainly dominated by the statistical uncertainty. We also find the ratio of transition probabilities corresponding to the O III 5007 A and 4959 A lines to be 2.933+/-0.002, in good agreement with the National Institute of Standards and Technology measurements.Comment: 5 pages, 3 figures; Accepted for publication in MNRAS Lette

    An investigation of the line of sight towards QSO PKS 0237-233

    Full text link
    We present a detailed analysis of absorption systems along the line of sight towards QSO PKS 0237-233 using a high resolution spectrum of signal-to-noise ratio (SNR) ~ 60-80 obtained with the Ultraviolet and Visual Echelle Spectrograph mounted on the Very Large Telescope. This line of sight is known to show a remarkable overdensity of CIV systems that has been interpreted as revealing the presence of a supercluster of galaxies. A detailed analysis of each of these absorption systems is presented. In particular, for the z_abs = 1.6359 (with two components of logN(HI) = 18.45, 19.05) and z_abs = 1.6720 (logN(H I) = 19.78) sub-Damped Ly-alpha systems (sub-DLAs), we measure accurate abundances (resp. [O/H] = -1.63(0.07) and [Zn/H] = - 0.57(0.05) relative to solar). While the depletion of refractory elements onto dust grains in both sub-DLAs is not noteworthy, photoionization models show that ionization effects are important in a part of the absorbing gas of the sub-DLA at z_abs = 1.6359 (HI is 95 percent ionized) and in part of the gas of the sub-DLA at z_abs = 1.6359. The CIV clustering properties along the line of sight is studied in order to investigate the nature of the observed overdensity. We conclude that despite the unusually high number of CIV systems detected along the line of sight, there is no compelling evidence for the presence of a single unusual overdensity and that the situation is consistent with chance coincidence.Comment: Accepted for publication in MNRAS. 23 pages, 16 figures, 12 table

    Parsec-scale structures and diffuse bands in a translucent interstellar medium at z 0.079

    Full text link
    We present a detailed study of the QSO-galaxy pair [SDSS J163956.35+112758.7 (zq = 0.993) and SDSS J163956.38+112802.1 (zg = 0.079)] based on observations carried out using the Giant Meterwave Radio Telescope (GMRT), the Very Large Baseline Array (VLBA), the Sloan Digital Sky Survey (SDSS) and the ESO New Technology Telescope (NTT). We show that the interstellar medium of the galaxy probed by the QSO line of sight has near-solar metallicity (12+log(O/H) = 8.47+/-0.25) and dust extinction (E(B-V) 0.83+/-0.11) typical of what is usually seen in translucent clouds. We report the detection of absorption in the \lambda 6284 diffuse interstellar band (DIB) with a rest equivalent width of 1.45+/-0.20\AA. Our GMRT spectrum shows a strong 21-cm absorption at the redshift of the galaxy with an integrated optical depth of 15.70+/-0.13 km/s. Follow-up VLBA observations show that the background radio source is resolved into three components with a maximum projected separation of 89 pc at the redshift of the galaxy. One of these components is too weak to provide useful HI 21-cm absorption information. The integrated HI optical depth towards the other two components are higher than that measured in our GMRT spectrum and differ by a factor 2. By comparing the GMRT and VLBA spectra we show the presence of structures in the 21-cm optical depth on parsec scales. We discuss the implications of such structures for the spin-temperature measurements in high-z damped Lyman-alpha systems. The analysis presented here suggests that this QSO-galaxy pair is an ideal target for studying the DIBs and molecular species using future observations in optical and radio wavebands.Comment: 10 pages, 8 figures, 2 tables, accepted for publication in MNRA

    Multi-epoch intra-night optical monitoring of 8 radio-quiet BL Lac candidates

    Full text link
    For a new sample of 8 weak-line-quasars (WLQs) we report a sensitive search in 20 intranight monitoring sessions, for blazar-like optical flux variations on hour-like and longer time scale (day/month/year-like). The sample consists exclusively of the WLQs that are not radio-loud and have either been classified as `radio-weak probable BL Lac candidates' and/or are known to have exhibited at least one episode of large, blazar-like optical variability. Whereas only a hint of intra-night variability is seen for two of these WLQs, J104833.5++620305.0(z = 0.219) and J133219.6++622715.9 (z = 3.15), statistically significant inter-night variability at a few per cent level is detected for three of the sources, including the radio-intermediate WLQ J133219.6++622715.9 (z = 3.15) and the well known bona-fide radio-quiet WLQs J121221.5++534128.0 (z = 3.10) and WLQ J153259.9-003944.1 (z = 4.62). In the rest-frame, this variability is intra-day and in the far-UV band. On the time scale of a decade, we find for three of the WLQs large brightness changes, amounting to 1.655±\pm0.009, 0.163±\pm0.010 and 0.144±\pm0.018 mag, for J104833.5++620305.0, J123743.1++630144.9 and J232428.4++144324.4, respectively. Whereas the latter two are confirmed radio-quiet WLQs, the extragalactic nature of J104833.5++620305.0 remains to be well established, thanks to the absence of any feature(s) in its available optical spectra. The present study forms a part of our ongoing campaign of intranight optical monitoring of radio quiet weak-line quasars, in order to improve the understanding of this enigmatic class of Active Galactic Nuclei and to look among them for a possible tiny, elusive population of radio-quiet BL Lacs.Comment: Accepted to MNRAS. 12 pages, 1 figure, 4 Tabl

    Probing the variation of the fine-structure constant using QSO absorption lines

    Get PDF
    Search for the time variation of the fundamental constants is motivated by various unification theories. Here we present constraints on the variation of the fine-structure constant &#945;&#x2261;2/ &#x0127;c) obtained using UVES/VLT samples of QSO absorption systems. We find &lt; &#916;&#945;/&#945; &gt;w = (-0.06 &#177; 0.06) &#215; 10-5 using 23 Mg II systems and the many-multiplet (MM) method. Well selected 15 Si IV systems provide &lt; &#916;&#945;/&#945; &gt;w = (0.15 &#177; 0.43) &#215;10-5. Absence of detectable variation in &#945; is also confirmed by our new very high resolution (R ~ 100,000) observation of zabs = 1.1508 toward HE 0515-4414 using HARPS on the ESO 3.6m telescope

    Constraining the variation of fundamental constants at z ~ 1.3 using 21-cm absorbers

    Full text link
    We present high resolution optical spectra obtained with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the Very Large Telescope (VLT) and 21-cm absorption spectra obtained with the Giant Metrewave Radio Telescope (GMRT) and the Green Bank Telescope (GBT) of five quasars along the line of sight of which 21-cm absorption systems at 1.17 < z < 1.56 have been detected previously. We also present milliarcsec scale radio images of these quasars obtained with the Very Large Baseline Array (VLBA). We use the data on four of these systems to constrain the time variation of x = g_p*alpha^2/mu where g_p is the proton gyromagnetic factor, alpha is the fine structure constant, and mu is the proton-to-electron mass ratio. We carefully evaluate the systematic uncertainties in redshift measurements using cross-correlation analysis and repeated Voigt profile fitting. In two cases we also confirm our results by analysing optical spectra obtained with the Keck telescope. We find the weighted and the simple means of Delta_x / x to be respectively -(0.1 +/- 1.3)x10^-6 and (0.0 +/- 1.5)x10^-6 at the mean redshift of = 1.36 corresponding to a look back time of ~ 9 Gyr. This is the most stringent constraint ever obtained on Delta_x / x. If we only use the two systems towards quasars unresolved at milliarcsec scales, we get the simple mean of Delta_x / x = + (0.2 +/- 1.6)x10^-6. Assuming constancy of other constants we get Delta_alpha / alpha = (0.0 +/- 0.8)x10^-6 which is a factor of two better than the best constraints obtained so far using the Many Multiplet Method. On the other hand assuming alpha and g_p have not varied we derive Delta_mmu / mu = (0.0 +/- 1.5)x10^-6 which is again the best limit ever obtained on the variation of mu over this redshift range. [Abridged]Comment: 22 pages, 15 figures, Accepted for publication in MNRA

    Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars

    Get PDF
    Most of the successful physical theories rely on the constancy of few fundamental quantities (such as the speed of light, cc, the fine-structure constant, \alpha, the proton to electron mass ratio, \mu, etc), and constraining the possible time variations of these fundamental quantities is an important step toward a complete physical theory. Time variation of \alpha can be accurately probed using absorption lines seen in the spectra of distant quasars. Here, we present the results of a detailed many-multiplet analysis performed on a new sample of Mg II systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in \alpha derived from our analysis over the redshift range 0.4<z<2.3 is \Delta\alpha/\alpha = (-0.06+/-0.06) x 10^{-5}. The median redshift of our sample (z=1.55) corresponds to a look-back time of 9.7 Gyr in the most favored cosmological model today. This gives a 3\sigma limit, -2.5 x 10^{-16} yr^-1 <(\Delta\alpha/\alpha\Delta t) <+1.2x10^{-16} yr^-1, for the time variation of \alpha, that forms the strongest constraint obtained based on high redshift quasar absorption line systems.Comment: uses revtex, 4 pages 3 figures. Accepted for publication in Physical Review Letter

    Probing the BLR in AGNs using time variability of associated absorption line

    Full text link
    It is know that most of the clouds producing associated absorption in the spectra of AGNs and quasars do not completely cover the background source (continuum + broad emission line region, BLR). We note that the covering factor derived for the absorption is the fraction of photons occulted by the absorbing clouds, and is not necessarily the same as the fractional area covered. We show that the variability in absorption lines can be produced by the changes in the covering factor caused by the variation in the continuum and the finite light travel time across the BLR. We discuss how such a variability can be distinguished from the variability caused by other effects and how one can use the variability in the covering factor to probe the BLR.Comment: 12 pages, latex(aaspp4.sty), 2 figures, (To appear in ApJ

    Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample

    Get PDF
    Development of fundamental physics relies on the constancy of various fundamental quantities such as the fine structure constant. Detecting or constraining the possible time variations of these fundamental physical quantities is an important step toward a complete understanding of basic physics. Here we present the results from a detailed many-multiplet analysis performed using high signal-to-noise ratio, high spectral resolution observations of 23 Mg II systems detected toward 18 QSOs in the redshift range 0.4<z<2.3 obtained using UVES at the VLT. We validate our procedure and define the selection criteria that will avoid possible systematics using detail analysis of simulated data set. We show our Voigt profile fitting code recovers the variation in \alpha very accurately when we use single component systems and multiple component systems that are not heavily blended. Spurious detections are frequently seen when we use heavily blended systems or the systems with very weak lines. Thus we avoided heavily blended systems and the systems with Fe II column density < 2x10^12 cm^-2 in the analysis. All steps involved in the analysis are presented in detail. The weighted mean value of the variation in \alpha obtained from our analysis over the redshift range 0.4<z<2.3 is {\Delta\alpha/\alpha} = (-0.06+/-0.06)x10^-5. The median redshift of our sample is 1.55 the 3\sigma upper limit on the time variation of α\alpha is -2.5x10^-16 yr^-1< (\Delta\alpha/\alpha\Delta t) <+1.2x10^-16 yr^-1. To our knowledge this is the strongest constraint from quasar absorption line studies till date.Comment: 23 pages; A&A style, 15 figures, accepte

    Probing the variation of fundamental constants using QSO absorption lines

    Get PDF
    Absorption lines seen in the spectra of distant QSOs allow us to probe the space and time evolution of various fundamental constants. Here, we summarize results on the variation of &#945; obtained by our group and others using UVES/VLT. Most upper limits reside in the range 0.5-1.5&#215;10-5 at the 3&#963; level over a redshift range of approximately 0:5 &#8804; z &#8804; 2:5. In addition, we also briefly report on preliminary results based on the analysis of 21-cm absorbers detected with Giant Meterwave Radio Telescope(GMRT) that lead to &#916;x=x = (0:0 &#177; 1:5) &#215; 10-6 at z=1.3. Discussions on future improvement are also presented
    corecore