25 research outputs found
Modification of Cantor High Entropy Alloy by the Addition of Mo and Nb: Microstructure Evaluation, Nanoindentation-Based Mechanical Properties, and Sliding Wear Response Assessment
The classic Cantor (FeCoCrMnNi) isoatomic high entropy alloy was modified by separate additions of Mo and Nb in an effort to optimize its mechanical properties and sliding wear response. It was found that the introduction of Mo and Nb modified the single phase FCC solid solution structure of the original alloy and led to the formation of new phases such as the BCC solid solution, σ-phase, and Laves, along with the possible existence of intermetallic phases. The overall phase formation sequence was approached by parametric model assessment and solidification considerations. Nanoindentation-based mechanical property evaluation showed that due to the introduction of Mo and Nb; the modulus of elasticity and microhardness were increased. Creep nanoindentation assessment revealed the beneficial action of Mo and Nb in increasing the creep resistance based on the stress sensitivity exponent, strain rate sensitivity, and critical volume for the dislocation nucleation considerations. The power law and power law breakdown were identified as the main creep deformation mechanisms. Finally, the sliding wear response was increased by the addition of Mo and Nb with this behavior obeying Archard’s law. A correlation between microstructure, wear track morphologies, and debris characteristics was also attempted
A Critical Review on Al-Co Alloys: Fabrication Routes, Microstructural Evolution and Properties
Al-Co alloys is an emerging category of metallic materials with promising properties and potential application in various demanding environments. Over the years, different manufacturing techniques have been employed to fabricate Al-Co alloys, spanning from conventional casting to rapid solidification techniques, such as melt spinning, thus leading to a variety of different microstructural features. The effect of the fabrication method on the microstructure is crucial, affecting the morphology and volume of the precipitates, the formation of supersaturated solid solutions and the development of amorphous phases. In addition, the alloy composition has an effect on the type and volume fraction of intermetallic phases formed. As a result, alloy properties are largely affected by the microstructural outcomes. This review focuses on highlighting the effect of the fabrication techniques and composition on the microstructure and properties of Al-Co alloys. Another goal is to highlight areas in the field that are not well understood. The advantages and limitations of this less common category of Al alloys are being discussed with the scope of future prospects and potential applications
Wear resistant CoCrFeMnNi0.8V High Entropy Alloy with Multi Length-Scale Hierarchical Microstructure
This work shows a CoCrFeMnNi0.8V high entropy alloy (HEA) with multiple length-scale hierarchical microstructure, obtained upon cooling at ∼ 62.5 K/s, consisting of a dominant globular sigma phase, FCC matrix and V-rich particles. The novel microstructure, never reported before for the CoCrFeMnNiV system, results in about a fourfold and sixfold increase of hardness and wear resistance, respectively, compared to that of CoCrFeMnNi alloy
Modeling the effects of concentration of solid nanoparticles in liquid feedstock injection on high-velocity suspension flame spray process
This paper presents the effects of the concentration of solid nanoparticles in the liquid feedstock injection on the
high-velocity suspension flame spray (HVSFS) process. Four different concentrations of solid nanoparticles in suspension
droplets with various droplet diameters are used to study gas dynamics, vaporization rate, and secondary breakup. Two types of
injections, viz. surface and group, are used. The group-type injection increases the efficiency of droplet disintegration and the
evaporation process and reduces the gas cooling. The initiation of the fragmentation process is difficult for small droplets carrying
a high concentration of nanoparticles. Also, smaller droplets undergo rapid vaporization, leaving clogs of nanoparticles in the
middle of the barrel. For larger droplets, severe fragmentation occurs inside the combustion chamber. For a higher concentration
of nanoparticles, droplets exit the gun without complete evaporation. The results suggest that, in coating applications involving a
higher concentration of nanoparticles, smaller droplet sizes are preferred
Thermal history coatings: influence of atmospheric plasma spray parameters on performance
Firing temperatures in gas turbines have seen a steady increase over the years to allow for higher engine efficiencies and lower hazardous emission levels. Conversely, these harsh conditions severely challenge component lifetime, requiring a design trade-off. Thus, it is crucial to understand temperature distribution across most of a component surface (>80%) to verify the design and durability. While a range of temperature measurement techniques are available, these primarily focus on lower temperatures, exhibit low durability (thermal paints), require line of sight (pyrometers), are destructive (thermal crystals) and only provide point measurements (thermocouples).
To overcome this challenge, Thermal History Coatings (THCs) measure temperature profiles in the 900-1600°C range. This new temperature profiling capability records the past maximum exposure temperature; this is determined once the component has already cooled down.
THCs are oxide ceramics deposited via Atmospheric Plasma Spraying (APS). APS deposition employs several variable parameters, which can affect the material process and therefore its temperature sensing performance.
This paper shows, for the first time, the influence of APS parameters on luminescent measurements due to changes in the material microstructure. Extensive calibration data was used to develop a new model relating APS spray parameters to the luminescent properties and consequent performance as a temperature sensor. The model identified the optimum spray parameters and was used to demonstrate THCs can achieve measurements in excess of 1600°C.The authors would like to thank the Royal Commission for the Exhibition of 1851 and the National Aerospace Technology Exploitation Programme (NATEP) for their continued financial support during the project.Journal of Engineering for Gas Turbines and Powe
Computational and experimental investigation of the strain rate sensitivity of small punch testing of the high-entropy alloy CoCrFeMnNi
The suitability of determining the strain rate sensitivity (SRS) of the CoCrFeMnNi high-entropy alloy (HEA) by small punch (SP) testing has been assessed at displacement rates ranging from 0.2 to 2mm∙min-1. The stress was found to increase as the displacement rate was raised from 0.2 to 2mm∙min-1, whereas the plastic strain distributions were similar in all cases. However, for a higher displacement rate of 10mm∙min-1, the sample was found to exhibit a drop in strength and ductility attributed to casting defects. The strain-rate sensitivity exponent (m) was found to be 0.1387 whilst the Finite Element Analysis (FEA) simulations predicted a slightly smaller value of 0.1313. This latter value is closer to m = 0.091 obtained from nanoindentation strain rate jump tests since the results are insensitive to the presence of small casting defects. The relationship between the experimental and the empirically derived predicted properties from the SP tests revealed a high level of agreement for maximum stress properties. The properties predicted at 2mm∙min-1 (R2 = 0.96) offered a stronger fit than at 0.5mm∙min-1 (R2 = 0.92)
Recommended from our members
Thermal Spray Coatings for Electromagnetic Wave Absorption and Interference Shielding: A Review and Future Challenges
This review paper aims to consolidate scattered literature on thermally sprayed coatings with non-ionising electromagnetic (EM) wave absorption and shielding over specific wavelengths potentially useful in diverse applications (e.g., microwave to millimeter wave, solar selective, photocatalytic, interference shielding, thermal barrier-heat/emissivity). Materials EM properties such as electric permittivity, magnetic permeability, electrical conductivity, and dielectric loss are critical due to which a material can respond to absorbed, reflected, transmitted, or may excite surface electromagnetic waves at frequencies typical of electromagnetic radiations. Thermal spraying is a standard industrial practice used for depositing coatings where the sprayed layer is formed by successive impact of fully or partially molten droplets/particles of a material (used in the form of powder or wire) exposed to high or moderate temperatures and velocities. However, as an emerging novel application of an existing thermal spray techniques, some special considerations are warranted for targeted development involving relevant characterisation. Key potential research areas of development relating to material selection and coating fabrication strategies and their impact on existing practices in the field are identified. The study shows a research gap in the feedstock materials design and doping (including hollow and yolk-shelled structure types) and their complex selection covered by thermally sprayed coatings that can be critical to advancing applications exploiting their electromagnetic properties
Thermal Spray Coatings for Electromagnetic Wave Absorption and Interference Shielding: A Review and Future Challenges
This review paper aims to consolidate scattered literature on thermally sprayed coatings with non-ionising electromagnetic (EM) wave absorption and shielding over specific wavelengths potentially useful in diverse applications (e.g., microwave to millimeter wave, solar selective, photocatalytic, interference shielding, thermal barrier-heat/emissivity). Materials EM properties such as electric permittivity, magnetic permeability, electrical conductivity, and dielectric loss are critical due to which a material can respond to absorbed, reflected, transmitted, or may excite surface electromagnetic waves at frequencies typical of electromagnetic radiations. Thermal spraying is a standard industrial practice used for depositing coatings where the sprayed layer is formed by successive impact of fully or partially molten droplets/particles of a material (used in the form of powder or wire) exposed to high or moderate temperatures and velocities. However, as an emerging novel application of an existing thermal spray techniques, some special considerations are warranted for targeted development involving relevant characterisation. Key potential research areas of development relating to material selection and coating fabrication strategies and their impact on existing practices in the field are identified. The study shows a research gap in the feedstock materials design and doping (including hollow and yolk-shelled structure types) and their complex selection covered by thermally sprayed coatings that can be critical to advancing applications exploiting their electromagnetic properties
Roadmap on signal processing for next generation measurement systems
Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System
Development of multiphase and multiscale mathematical models for thermal spray process
High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm.EThOS - Electronic Theses Online ServiceGBUnited Kingdo