110 research outputs found

    Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin

    Get PDF
    Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer

    Plasma membrane proteomes of differentially matured dendritic cells identified by LC-MS/MS combined with iTRAQ labelling

    Get PDF
    AbstractDendritic cells (DCs) play a pivotal role in polarising Th lymphocyte subsets but it is unclear what molecular events occur when DCs generate Th2-type responses. Here, we analysed plasma membrane-enriched fractions from immature, pro-Th1 and pro-Th2 DCs and used a combination of iTRAQ labelling and LC–MS/MS to quantify changes in the proteomes. Analysis was performed on triplicate biological samples and changes verified by flow cytometry. MHC class II molecules and CD29 were up-regulated in pro-Th1 DCs whilst CD18 and CD44 were up-regulated in pro-Th2 DCs. One of the most down-regulated molecules in pro-Th1 DCs was YM-1 whilst the greatest decrease in pro-Th2 DCs was NAP-22. Other molecules up-regulated in pro-Th2 DC compared to pro-Th1 DCs included some potentially involved in protein folding during antigen processing (clathrin and Rab-7), whilst other non-membrane proteins such as enzymes/transporters related to cell metabolism (malate dehydrogenase, pyruvate kinase, and ATPase Na+/K+) were also recorded. This suggests that pro-Th2 DCs are more metabolically active while pro-Th1 DCs have a mature ‘end state’. Overall, although several molecules were preferentially expressed on pro-Th2 DCs, our proteomics data support the view of a ‘limited maturation’ of pro-Th2 DCs compared to pro-Th1 DCs

    Uncovering Enhancer Functions Using the α-Globin Locus

    Get PDF
    Over the last three decades, studies of the α- and β-globin genes clusters have led to elucidation of the general principles of mammalian gene regulation, such as RNA stability, termination of transcription, and, more importantly, the identification of remote regulatory elements. More recently, detailed studies of α-globin regulation, using both mouse and human loci, allowed the dissection of the sequential order in which transcription factors are recruited to the locus during lineage specification. These studies demonstrated the importance of the remote regulatory elements in the recruitment of RNA polymerase II (PolII) together with their role in the generation of intrachromosomal loops within the locus and the removal of polycomb complexes during differentiation. The multiple roles attributed to remote regulatory elements that have emerged from these studies will be discussed

    Erythropoietic repopulating ability of stem cells from long-term marrow culture.

    No full text
    Hemopoietic precursors are heterogeneous with respect to their capacity for self-renewal and long-term repopulating ability. Bone marrow cultures produce a variety of precursors over many weeks, including CFU-S; however, it is important to determine whether these populations retain the functional ability shown by fresh marrow. The most primitive precursor or stem cells have the most long-term repopulating ability. We here describe direct measurements of this ability in cells from marrow cultures by using competitive repopulation assays. Cultured adherent cells repeatedly showed less capacity than fresh marrow cells to repopulate erythropoiesis in irradiated recipients, whereas cultured suspension cells consistently had less capacity than adherent cells. Concentrations of macroscopic CFU-S measured at nine or 12 days were similar in cultured adherent and suspension cells and generally lower than those in fresh marrow. In every experiment, the long-term repopulating ability of the marrow cells used was substantially reduced after transfer into tissue culture. Thus, primitive stem cells may not proliferate in such cultures despite extensive production of CFU-S and more differentiated cell types
    corecore