429 research outputs found
Recommended from our members
Intraperitoneal photodynamic therapy causes a capillary-leak syndrome.
BackgroundIn patients undergoing intraperitoneal (IP) photodynamic therapy (PDT), the combination of aggressive surgical debulking and light therapy causes an apparent systemic capillary-leak syndrome that necessitates significant intensive care unit (ICU) management after surgery.MethodsFrom May 1997 to May 2001, 65 patients underwent surgical debulking and PDT as part of an ongoing phase II trial for disseminated IP cancer. Perioperative data were reviewed retrospectively, and statistical analyses were performed to determine whether any identifiable factors were associated with the need for mechanical ventilation for longer than 1 day and with the occurrence of postoperative complications.ResultsForty-three women and 22 men (mean age, 49 years) were treated. Operative time averaged 9.8 hours, and mean estimated blood loss was 1450 mL. The mean crystalloid requirement for the first 48 hours after surgery was 29.3 L, and 49 patients required blood products. Twenty-four patients were intubated for longer than 24 hours, with a mean of 8.3 days for those intubated longer than 1 day. The median ICU stay was 4 days. Overall, 110 complications developed in 45 (69%) of the 65 patients. Significant complications included 6 patients with acute respiratory distress syndrome, 28 patients with infectious complications, and 4 patients with anastomotic complications. Statistical analyses revealed that surgery-related factors were significantly associated with these complication outcomes.ConclusionsPatients who undergo surgical debulking and IP PDT develop a significant capillary-leak syndrome after surgery that necessitates massive volume resuscitation, careful ICU monitoring, and, frequently, prolonged ventilatory support
Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance
Neurodegeneration can occur as a result of endogenous oxidative stress. Primary cerebellar granule cells were used in this study to determine if mitochondrial DNA (mtDNA) repair deficiencies correlate with oxidative stress-induced apoptosis in neuronal cells. Granule cells exhibited a significantly higher intracellular oxidative state compared with primary astrocytes as well as increases in reductants, such as glutathione, and redox sensitive signaling molecules, such as AP endonuclease/redox effector factor-1. Cerebellar granule cultures also exhibited an increased susceptibility to exogenous oxidative stress. Menadione (50 μM) produced twice as many lesions in granule cell mtDNA compared with astrocytes, and granule cell mtDNA repair was significantly less efficient. A decreased capacity to repair oxidative mtDNA damage correlates strongly with mitochondrial initiated apoptosis in these neuronal cultures. Interestingly, the mitochondrial activities of initiators for base excision repair (BER), the bifunctional glycosylase/AP lyases as well as AP endonuclease, were significantly higher in cerebellar granule cells compared with astrocytes. The increased mitochondrial AP endonuclease activity in combination with decreased polymerase γ activity may cause an imbalance in oxidative BER leading to an increased production and persistence of mtDNA damage in neurons when treated with menadione. This study provides evidence linking neuronal mtDNA repair capacity with oxidative stress-related neurodegeneration
Essential Components of Cancer Education
Modern cancer therapy/care involves the integration of basic, clinical, and population-based research professionals using state-of-the-art science to achieve the best possible patient outcomes. A well-integrated team of basic, clinical, and population science professionals and educators working with a fully engaged group of creative junior investigators and trainees provides a structure to achieve these common goals. To this end, the structure provided by cancer-focused educational programs can create the integrated culture of academic medicine needed to reduce the burden of cancer on society. This summary outlines fundamental principles and potential best practice strategies for the development of integrated educational programs directed at achieving a work force of professionals that broadly appreciate the principals of academic medicine spanning the breadth of knowledge necessary to advance the goal of improving the current practice of cancer care medicine
Inhibition of Glutathione and Thioredoxin Metabolism Enhances Sensitivity to Perifosine in Head and Neck Cancer Cells
The hypothesis that the Akt inhibitor, perifosine (PER), combined with inhibitors of glutathione (GSH) and thioredoxin (Trx) metabolism will induce cytotoxicity via metabolic oxidative stress in human head and neck cancer (HNSCC) cells was tested. PER induced increases in glutathione disulfide (%GSSG) in FaDu, Cal-27, and SCC-25 HNSCCs as well as causing significant clonogenic cell killing in FaDu and Cal-27, which was suppressed by simultaneous treatment with N-acetylcysteine (NAC). An inhibitor of GSH synthesis, buthionine sulfoximine (BSO), sensitized Cal-27 and SCC-25 cells to PER-induced clonogenic killing as well as decreased total GSH and increased %GSSG. Additionally, inhibition of thioredoxin reductase activity (TrxRed) with auranofin (AUR) was able to induce PER sensitization in SCC-25 cells that were initially refractory to PER. These results support the conclusion that PER induces oxidative stress and clonogenic killing in HNSCC cells that is enhanced with inhibitors of GSH and Trx metabolism
A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation
SummaryCalcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) couples increases in cellular Ca2+ to fundamental responses in excitable cells. CaMKII was identified over 20 years ago by activation dependence on Ca2+/CaM, but recent evidence shows that CaMKII activity is also enhanced by pro-oxidant conditions. Here we show that oxidation of paired regulatory domain methionine residues sustains CaMKII activity in the absence of Ca2+/CaM. CaMKII is activated by angiotensin II (AngII)-induced oxidation, leading to apoptosis in cardiomyocytes both in vitro and in vivo. CaMKII oxidation is reversed by methionine sulfoxide reductase A (MsrA), and MsrA−/− mice show exaggerated CaMKII oxidation and myocardial apoptosis, impaired cardiac function, and increased mortality after myocardial infarction. Our data demonstrate a dynamic mechanism for CaMKII activation by oxidation and highlight the critical importance of oxidation-dependent CaMKII activation to AngII and ischemic myocardial apoptosis
Phase II trial of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors
Background: Photodynamic therapy (PDT) combines photosensitizer drug, oxygen, and laser light to kill tumor cells on surfaces. This is the initial report of our phase II trial, designed to evaluate the effectiveness of surgical debulking and PDT in carcinomatosis and sarcomatosis. Methods: Fifty-six patients were enrolled between April 1997 and January 2000. Patients were given Photofrin (2.5 mg/kg) intravenously 2 days before tumor-debulking surgery. Laser light was delivered to all peritoneal surfaces. Patients were followed with CT scans and laparoscopy to evaluate responses to treatment. Results: Forty-two patients were adequately debulked at surgery; these comprise the treatment group. There were 14 GI malignancies, 12 ovarian cancers and 15 sarcomas. Actuarial median survival was 21 months. Median time to recurrence was 3 months (range, 1-21 months). The most common serious toxicities were anemia (38%), liver function test (LFT) abnormalities (26%), and gastrointestinal toxicities(19%), and one patient died. Conclusions: Photofrin PDT for carcinomatosis has been successfully administered to 42 patients, with acceptable toxicity. The median survival of 21 months exceeds our expectations; however, the relative contribution of surgical resection versus PDT is unknown. Deficiencies in photosensitizer delivery, tissue oxygenation, or laser light distribution leading to recurrences may be addressed through the future use of new photosensitizers
Sirt3, Mitochondrial ROS, Ageing, and Carcinogenesis
One fundamental observation in cancer etiology is that the rate of malignancies in any mammalian population increases exponentially as a function of age, suggesting a mechanistic link between the cellular processes governing longevity and carcinogenesis. In addition, it is well established that aberrations in mitochondrial metabolism, as measured by increased reactive oxygen species (ROS), are observed in both aging and cancer. In this regard, genes that impact upon longevity have recently been characterized in S. cerevisiae and C. elegans, and the human homologs include the Sirtuin family of protein deacetylases. Interestingly, three of the seven sirtuin proteins are localized into the mitochondria suggesting a connection between the mitochondrial sirtuins, the free radical theory of aging, and carcinogenesis. Based on these results it has been hypothesized that Sirt3 functions as a mitochondrial fidelity protein whose function governs both aging and carcinogenesis by modulating ROS metabolism. Sirt3 has also now been identified as a genomically expressed, mitochondrial localized tumor suppressor and this review will outline potential relationships between mitochondrial ROS/superoxide levels, aging, and cell phenotypes permissive for estrogen and progesterone receptor positive breast carcinogenesis
- …