87 research outputs found
Constructive pointfree topology eliminates non-constructive representation theorems from Riesz space theory
In Riesz space theory it is good practice to avoid representation theorems
which depend on the axiom of choice. Here we present a general methodology to
do this using pointfree topology. To illustrate the technique we show that
almost f-algebras are commutative. The proof is obtained relatively
straightforward from the proof by Buskes and van Rooij by using the pointfree
Stone-Yosida representation theorem by Coquand and Spitters
Bohrification of operator algebras and quantum logic
Following Birkhoff and von Neumann, quantum logic has traditionally been
based on the lattice of closed linear subspaces of some Hilbert space, or, more
generally, on the lattice of projections in a von Neumann algebra A.
Unfortunately, the logical interpretation of these lattices is impaired by
their nondistributivity and by various other problems. We show that a possible
resolution of these difficulties, suggested by the ideas of Bohr, emerges if
instead of single projections one considers elementary propositions to be
families of projections indexed by a partially ordered set C(A) of appropriate
commutative subalgebras of A. In fact, to achieve both maximal generality and
ease of use within topos theory, we assume that A is a so-called Rickart
C*-algebra and that C(A) consists of all unital commutative Rickart
C*-subalgebras of A. Such families of projections form a Heyting algebra in a
natural way, so that the associated propositional logic is intuitionistic:
distributivity is recovered at the expense of the law of the excluded middle.
Subsequently, generalizing an earlier computation for n-by-n matrices, we
prove that the Heyting algebra thus associated to A arises as a basis for the
internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the
"Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of
functors from C(A) to the category of sets. We explain the relationship of this
construction to partial Boolean algebras and Bruns-Lakser completions. Finally,
we establish a connection between probability measure on the lattice of
projections on a Hilbert space H and probability valuations on the internal
Gelfand spectrum of A for A = B(H).Comment: 31 page
CGIAR modeling approaches for resource-constrained scenarios: I. Accelerating crop breeding for a changing climate.
Crop improvement efforts aiming at increasing crop production (quantity, quality) and adapting to climate change have been subject of active research over the past years. But, the question remains 'to what extent can breeding gains be achieved under a changing climate, at a pace sufficient to usefully contribute to climate adaptation, mitigation and food security?'. Here, we address this question by critically reviewing how model-based approaches can be used to assist breeding activities, with particular focus on all CGIAR (formerly the Consultative Group on International Agricultural Research but now known simply as CGIAR) breeding programs. Crop modeling can underpin breeding efforts in many different ways, including assessing genotypic adaptability and stability, characterizing and identifying target breeding environments, identifying tradeoffs among traits for such environments, and making predictions of the likely breeding value of the genotypes. Crop modeling science within the CGIAR has contributed to all of these. However, much progress remains to be done if modeling is to effectively contribute to more targeted and impactful breeding programs under changing climates. In a period in which CGIAR breeding programs are undergoing a major modernization process, crop modelers will need to be part of crop improvement teams, with a common understanding of breeding pipelines and model capabilities and limitations, and common data standards and protocols, to ensure they follow and deliver according to clearly defined breeding products. This will, in turn, enable more rapid and better-targeted crop modeling activities, thus directly contributing to accelerated and more impactful breeding efforts.Online Version of Record before inclusion in an issue
A topos for algebraic quantum theory
The aim of this paper is to relate algebraic quantum mechanics to topos
theory, so as to construct new foundations for quantum logic and quantum
spaces. Motivated by Bohr's idea that the empirical content of quantum physics
is accessible only through classical physics, we show how a C*-algebra of
observables A induces a topos T(A) in which the amalgamation of all of its
commutative subalgebras comprises a single commutative C*-algebra. According to
the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter
has an internal spectrum S(A) in T(A), which in our approach plays the role of
a quantum phase space of the system. Thus we associate a locale (which is the
topos-theoretical notion of a space and which intrinsically carries the
intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which
is the noncommutative notion of a space). In this setting, states on A become
probability measures (more precisely, valuations) on S(A), and self-adjoint
elements of A define continuous functions (more precisely, locale maps) from
S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to
propositions about the system, the pairing map that assigns a (generalized)
truth value to a state and a proposition assumes an extremely simple
categorical form. Formulated in this way, the quantum theory defined by A is
essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical
Physic
Intuitionistic quantum logic of an n-level system
A decade ago, Isham and Butterfield proposed a topos-theoretic approach to
quantum mechanics, which meanwhile has been extended by Doering and Isham so as
to provide a new mathematical foundation for all of physics. Last year, three
of the present authors redeveloped and refined these ideas by combining the
C*-algebraic approach to quantum theory with the so-called internal language of
topos theory (see arXiv:0709.4364). The goal of the present paper is to
illustrate our abstract setup through the concrete example of the C*-algebra of
complex n by n matrices. This leads to an explicit expression for the pointfree
quantum phase space and the associated logical structure and Gelfand transform
of an n-level system. We also determine the pertinent non-probabilisitic
state-proposition pairing (or valuation) and give a very natural
topos-theoretic reformulation of the Kochen--Specker Theorem. The essential
point is that the logical structure of a quantum n-level system turns out to be
intuitionistic, which means that it is distributive but fails to satisfy the
law of the excluded middle (both in opposition to the usual quantum logic).Comment: 26 page
- âŠ