208 research outputs found

    Adjuvant Perioperative Intraperitoneal Chemotherapy in Locally Advanced Colorectal Carcinoma: Preliminary Results

    Get PDF
    Background and Aims. Intraperitoneal chemotherapy is a basic tool in the treatment of peritoneal malignancy. The purpose of the study is to investigate the effect of adjuvant perioperative intraperitoneal chemotherapy in the treatment of locally advanced colorectal cancer. Patients and Methods. Patients with T3 and T4 colorectal carcinomas that underwent R0 resection received either hyperthermic intraoperative intraperitoneal chemotherapy (HIPEC group = 40 patients) or early postoperative intraperitoneal chemotherapy (EPIC group = 67 patients). The survival, the recurrences and the sites of recurrence were assessed. Results. The 3-year survival rate for HIPEC group was 100% and for EPIC group 69% (P = .011). Nodal infiltration was found to be the single prognostic indicator of survival. The incidence of recurrence in EPIC group was higher than in HIPEC group (P = .009). The independent indicators of recurrence were the use of HIPEC and the degree of differentiation (P < .05). Conclusions. Intraperitoneal chemotherapy, particularly HIPEC, as an adjuvant in locally advanced colorectal carcinomas appears to improve survival and decrease the incidence of recurrence

    Penalty-free feasibility boundary convergent multi-objective evolutionary algorithm for the optimization of water distribution systems

    Get PDF
    This paper presents a new penalty-free multi-objective evolutionary approach (PFMOEA) for the optimization of water distribution systems (WDSs). The proposed approach utilizes pressure dependent analysis (PDA) to develop a multi-objective evolutionary search. PDA is able to simulate both normal and pressure deficient networks and provides the means to accurately and rapidly identify the feasible region of the solution space, effectively locating global or near global optimal solutions along its active constraint boundary. The significant advantage of this method over previous methods is that it eliminates the need for ad-hoc penalty functions, additional “boundary search” parameters, or special constraint handling procedures. Conceptually, the approach is downright straightforward and probably the simplest hitherto. The PFMOEA has been applied to several WDS benchmarks and its performance examined. It is demonstrated that the approach is highly robust and efficient in locating optimal solutions. Superior results in terms of the initial network construction cost and number of hydraulic simulations required were obtained. The improvements are demonstrated through comparisons with previously published solutions from the literature

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables

    Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro

    Get PDF
    Parasitic helminths are inducers of chronic diseases and have evolved mechanisms to suppress the host immune response. Mostly from studies on roundworms, a picture is currently emerging that helminths secrete factors (E/S-products) that directly act on sentinels of the immune system, dendritic cells, in order to achieve an expansion of immunosuppressive, regulatory T cells (T-reg). Parasitic helminths are currently also intensely studied as therapeutic agents against autoimmune diseases and allergies, which is directly linked to their immunosuppressive activities. The immunomodulatory products of parasitic helminths are therefore of high interest for understanding immunopathology during infections and for the treatment of allergies. The present work was conducted on larvae of the tapeworm E. multilocularis, which grow like a tumor into surrounding host tissue and thus cause the lethal disease alveolar echinococcosis. The authors found that E/S-products from early infective larvae are strong inducers of tolerogenic DC in vitro and show that E/S-products of larvae of the chronic stage lead to an in vitro expansion of Foxp3+ T cells, suggesting that both the expansion of these T cells and poorly responsive DC are important for the establishment and persistence of E. multilocularis larvae within the host

    Serological Assays for Alveolar and Cystic Echinococcosis-A Comparative Multi-Test Study in Switzerland and Kyrgyzstan.

    Get PDF
    Both alveolar (AE) and cystic echinococcosis (CE) are lacking pathognomonic clinical signs; consequently imaging technologies and serology remain the main pillars for diagnosis. The present study included 100 confirmed treatment-naïve AE and 64 CE patients that were diagnosed in Switzerland or Kyrgyzstan. Overall, 10 native Echinococcus spp. antigens, 3 recombinant antigens, and 4 commercial assays were comparatively evaluated. All native E. multilocularis antigens were produced in duplicates with a European and a Kyrgyz isolate and showed identical test values for the diagnosis of AE and CE. Native antigens and three commercial tests showed high diagnostic sensitivities (Se: 86-96%) and specificities (Sp: 96-99%) for the diagnosis of AE and CE in Swiss patients. In Kyrgyz patients, values of sensitivities and specificities were 10-20% lower as compared to the Swiss patients' findings. For the sero-diagnosis of AE in Kyrgyzstan, a test-combination of an E. multilocularis protoscolex antigen and the recombinant antigen Em95 appears to be the most suitable test strategy (Se: 98%, Sp: 87%). For the diagnosis of CE in both countries, test performances were hampered by major cross-reactions with AE patients and other parasitic diseases as well as by limited diagnostic sensitivities (93% in Switzerland and 76% in Kyrgyzstan, respectively)

    Serological Assays for Alveolar and Cystic Echinococcosis—A Comparative Multi-Test Study in Switzerland and Kyrgyzstan

    Full text link
    Both alveolar (AE) and cystic echinococcosis (CE) are lacking pathognomonic clinical signs; consequently imaging technologies and serology remain the main pillars for diagnosis. The present study included 100 confirmed treatment-naïve AE and 64 CE patients that were diagnosed in Switzerland or Kyrgyzstan. Overall, 10 native Echinococcus spp. antigens, 3 recombinant antigens, and 4 commercial assays were comparatively evaluated. All native E. multilocularis antigens were produced in duplicates with a European and a Kyrgyz isolate and showed identical test values for the diagnosis of AE and CE. Native antigens and three commercial tests showed high diagnostic sensitivities (Se: 86-96%) and specificities (Sp: 96-99%) for the diagnosis of AE and CE in Swiss patients. In Kyrgyz patients, values of sensitivities and specificities were 10-20% lower as compared to the Swiss patients' findings. For the sero-diagnosis of AE in Kyrgyzstan, a test-combination of an E. multilocularis protoscolex antigen and the recombinant antigen Em95 appears to be the most suitable test strategy (Se: 98%, Sp: 87%). For the diagnosis of CE in both countries, test performances were hampered by major cross-reactions with AE patients and other parasitic diseases as well as by limited diagnostic sensitivities (93% in Switzerland and 76% in Kyrgyzstan, respectively). Keywords: ELISA; Echinococcus granulosus sensu lato; Echinococcus multilocularis; Western blot; antibodies; antigens; diagnosis; serology

    Description of Hymenolepis microstoma (Nottingham strain): a classical tapeworm model for research in the genomic era

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Hymenolepis microstoma </it>(Dujardin, 1845) Blanchard, 1891, the mouse bile duct tapeworm, is a rodent/beetle-hosted laboratory model that has been used in research and teaching since its domestication in the 1950s. Recent characterization of its genome has prompted us to describe the specific strain that underpins these data, anchoring its identity and bringing the 150+ year-old original description up-to-date.</p> <p>Results</p> <p>Morphometric and ultrastructural analyses were carried out on laboratory-reared specimens of the 'Nottingham' strain of <it>Hymenolepis microstoma </it>used for genome characterization. A contemporary description of the species is provided including detailed illustration of adult anatomy and elucidation of its taxonomy and the history of the specific laboratory isolate.</p> <p>Conclusions</p> <p>Our work acts to anchor the specific strain from which the <it>H. microstoma </it>genome has been characterized and provides an anatomical reference for researchers needing to employ a model tapeworm system that enables easy access to all stages of the life cycle. We review its classification, life history and development, and briefly discuss the genome and other model systems being employed at the beginning of a genomic era in cestodology.</p

    Septins Regulate Bacterial Entry into Host Cells

    Get PDF
    Background: Septins are conserved GTPases that form filaments and are required in many organisms for several processes including cytokinesis. We previously identified SEPT9 associated with phagosomes containing latex beads coated with the Listeria surface protein InlB. Methodology/Principal Findings: Here, we investigated septin function during entry of invasive bacteria in non-phagocytic mammalian cells. We found that SEPT9, and its interacting partners SEPT2 and SEPT11, are recruited as collars next to actin at the site of entry of Listeria and Shigella. SEPT2-depletion by siRNA decreased bacterial invasion, suggesting that septins have roles during particle entry. Incubating cells with InlB-coated beads confirmed an essential role for SEPT2. Moreover, SEPT2-depletion impaired InlB-mediated stimulation of Met-dependent signaling as shown by FRET. Conclusions/Significance: Together these findings highlight novel roles for SEPT2, and distinguish the roles of septin an

    Septin6 and Septin7 GTP binding proteins regulate AP-3- and ESCRT-dependent multivesicular body biogenesis

    Get PDF
    Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies
    corecore