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Abstract 

  

This paper presents a new penalty-free multi-objective evolutionary approach 
(PFMOEA) for the optimization of water distribution systems (WDSs). The proposed 
approach utilizes pressure dependent analysis (PDA) to develop a multi-objective 
evolutionary search. PDA is able to simulate both normal and pressure deficient 
networks and provides the means to accurately and rapidly identify the feasible region 
of the solution space, effectively locating global or near global optimal solutions 
along its active constraint boundary. The significant advantage of this method over 
previous methods is that it eliminates the need for ad-hoc penalty functions, additional 
“boundary search” parameters, or special constraint handling procedures. 
Conceptually, the approach is downright straightforward and probably the simplest 
hitherto. The PFMOEA has been applied to several WDS benchmarks and its 
performance examined. It is demonstrated that the approach is highly robust and 
efficient in locating optimal solutions. Superior results in terms of the initial network 
construction cost and number of hydraulic simulations required were obtained. The 
improvements are demonstrated through comparisons with previously published 
solutions from the literature.  
 
 
 
Keywords Multi-objective optimization • Demand-driven analysis • Penalty-free 
evolutionary boundary search • Genetic Algorithm • Pressure-dependent analysis • 
Pressure-deficient water distribution system  
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1 Introduction 
 
The computational complexity involved in optimizing the design and rehabilitation of 
water distribution systems (WDSs) is exceptionally high. Simply the selection of pipe 
diameters (from a set of commercially available discrete diameters) to form a water 
supply system of least capital cost has been demonstrated to be an NP-hard problem, 
let alone considering multiple loading conditions, operating cost, rehabilitation 
options and other aspects that affect real-life networks. Yates et al. (1984) stated that 
the global optimum solution to WDS design problem can only be guaranteed by 
means of explicit or implicit enumeration techniques such as dynamic programming. 
These techniques require a great amount of computer time as they involve searching 
the entire solution space. For example, a small eight-pipe network with 10 possible 
pipe sizes has a total of 108 feasible and infeasible pipe size combinations. It is clear 
that the search space increases exponentially with the size of the network. This 
undoubtedly marks the limitations of exhaustive enumeration techniques in 
optimizing realistic WDSs.  
 
Alperovits and Shamir (1977) solved the highly nonlinear WDS design optimization 
problem by employing linear programming (LP). The LP formulation is based on a set 
of assumed pipe flow rates and pipe lengths are used as decision variables, resulting 
in designs in which pipes are made up of two-diameter segments. This type of 
solution is unfortunately unsuitable for practical implementation. Several researchers 
(e.g. Su et al. 1987; Lansey and Mays 1989) applied non-linear programming (NLP) 
in the design optimization of WDSs. However, the resulting NLP solutions are of 
continuous diameter values which are not directly applicable. Rounding the diameters 
up or down to the nearest discrete pipe sizes will not necessarily guarantee the 
optimality of the solution and can often deteriorate the quality of the solution. 
Moreover, the rounded solution may not even satisfy the pressure constraints and 
additional simulations are required to evaluate them. In general, mathematical 
programming methods rely on the initial solution and do not guarantee that the global 
optimum will be obtained. They are often trapped in local optima, resulting in 
suboptimal solutions. Also, this deterministic method is rigid and lacks flexibility as it 
only yields a single final solution.  
 
For the past few decades, researchers have extensively applied evolutionary 
algorithms (EAs) in the optimization of WDSs. These random search methods are 
capable of handling discrete variables with ease, which is one of the most important 
aspects in the WDS optimization. Unlike traditional optimization methods, they are 
easy to implement without mathematical complexity as their search strategy is based 
on objective functions and does not rely on the continuity of derivatives or gradient 
information. In addition, the majority of these methods operate on a population of 
solutions and hence significantly increasing the chances of reaching the global 
optimum. There are various EAs applied in the optimization of WDS design. 
Amongst these optimization techniques, GAs are probably the best known and most 
extensively applied in the area of WDS optimization due to their robustness and 
capability in yielding optimal or near optimal solutions (Dandy et al. 1996; Savic and 
Walters 1997; Wu et al. 2001 and Vairavamoorthy and Ali 2000, 2005). A detailed 
description of the standard GA can be found in Savic and Walters (1997). The 
proposed approach involves the implementation of a GA and hence, this paper will 
only focus on the development of this EA technique. 
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Many developments have been carried out to improve the effectiveness and efficiency 
of GAs in the optimization of WDSs. Savic and Walters (1997) proposed the use of 
Gray coding as opposed to binary coding to overcome convergence problems related 
to the hamming cliff effect. Vairavamoorthy and Ali (2000) avoided the encoding and 
decoding of diameter variables by implementing real coding. Halhal et al. (1997) and 
Wu and Simpson (2001) used messy GA with variable length string representation. 
Vairavamoorthy and Ali (2000) reduced the computational time of the GA search by 
approximating the hydraulic behaviour of the WDS using a linear transformation 
function. Search space reduction was attempted by Vairavamoorthy and Ali (2005) 
and Mahendra et al. (2008) by limiting the candidate diameter for each link based on 
the pipe index vector and critical path method respectively. Keedwell and Khu (2006) 
enhanced the GA search by seeding the initial GA population with good solutions 
generated from a deterministic model based on a computational method known as 
cellular automaton.  
 
In this paper, a new multi-objective evolutionary optimization approach for WDSs is 
proposed. The new approach employs a novel boundary-convergent technique which 
efficiently guides the search to concentrate on solutions close to the boundaries of the 
feasible region of the solution space. Also, a new rigorous and efficient way of 
handling constraints is introduced. The method developed herein completely 
eliminates the need for penalties. With proper assessment of the performance of near-
feasible solutions in particular, the proposed approach is able very quickly to locate 
global or near global optimal solutions. Herein, the numbers of function evaluations 
required has been reduced by a very large margin in comparison to the best results for 
the benchmarks in the literature.   
 

 

2 Constraint Handling 
 
In general, trial solutions (WDS designs) generated by an EA are simulated using a 
hydraulic simulator and the resulting nodal heads are evaluated based on the pressure 
constraint requirements. Solutions that violate the pressure constraints are considered 
as infeasible. However, a major disadvantage of EAs is that they are unable to directly 
handle constraints. In other words, EAs are incapable of differentiating feasible 
solutions from non-feasible ones. Majority of the WDS EA optimization work in the 
literature use the penalty function approach to handle pressure constraints (e.g. Savic 
and Walters, 1997). In this method, an additional penalty cost is applied to the actual 
WDS cost of the infeasible solution. The penalty cost is usually calculated using 
penalty parameters which are formulated such that greater constraint violations incur 
higher penalty costs. In this way, the probability of solutions being discarded in the 
next generation will depend on their degree of constraint violation.  
 
The optimal solution heavily depends on the penalty parameters. A large penalty cost 
inherently restricts the EA search to the feasible region of the solution space 
potentially resulting in very expensive and highly redundant solutions. On the other 
hand, a small penalty cost will misguide the EA into ranking the fitness of an 
infeasible solution to be of similar value as a feasible one, causing its search to 
revolve around the infeasible region. Choosing suitable values of a penalty parameter 
is not a straightforward task. Users usually have to, by trial and error, find the best 
value that would guide the search towards the feasible region. This requires extensive 
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and exhaustive fine tuning before the penalty function can be effectively incorporated 
into the EA framework. Moreover, the effectiveness of the penalty parameters is often 
case sensitive in that the performance varies from one optimization problem to 
another. If poorly chosen, the penalty parameter can severely distort the objective 
function and impair the EA in terms of the optimality of the final solution and rate of 
convergence. Also, the unconstrained optimization problems generated by the penalty 
functions have larger objective function spaces compared to the original problems 
which, therefore, decrease the probability of the search to locate the optimum 
solution. 
 
Several researchers have attempted to address this problem. Khu and Keedwell (2005) 
avoided the use of penalty functions by formulating each nodal pressure constraint as 
an objective function within a multi-objective evolutionary algorithm framework. 
This approach requires enormous computational effort and lacks the practicality to be 
applied to real-life WDSs which may contain hundreds or thousands of nodes. 
Following Deb (2000), Prasad and Park (2004) adopted a constraint handling method 
that does not require a penalty coefficient. This method uses a tournament selection 
operator where 1) feasible solutions are preferred over infeasible solutions; 2) 
between two infeasible solutions, the one with smaller constraint violation is selected; 
and 3) between two feasible solutions, the one with better fitness value is selected. A 
closer examination of the approach reveals that it can lead to anomalies. For example, 
the most expensive feasible solution will be ranked more highly than a borderline 
infeasible solution which may still be acceptable in reality and carry the 
overwhelming majority of the good genes.  
 
Based on the fact that optimal or near-optimal solutions are generally located near the 
active constraint boundaries, Wu and Walski (2005) developed a self-adaptive penalty 
method based on a heuristic boundary search technique. The approach involved an 
evolving penalty factor that aimed to focus the GA search around the boundary of the 
feasible solution region. However, the implementation of this self-adaptive heuristic 
technique requires the prior calibration of several additional special parameters. 
Afshar and Marino (2007) proposed a self-adaptive penalty method. The approach 
incorporates a procedure that handles the constraints that are violated in an explicit 
way. Farmani et al. (2005) used a self-adaptive fitness formulation which involves the 
implementation of a two-stage penalty. The first stage ensures that the worst 
infeasible solution is allocated a penalty cost that is higher or at least equal to the cost 
of the cheapest feasible solution in the population. The penalty cost of the worst 
infeasible solutions is then further increased to twice the cost of the cheapest feasible 
solution at the second stage. However, the robustness of the suggested scheme is 
questionable as it can allow infeasible solutions to be selected over feasible solutions 
that cost more than twice the cost of the cheapest feasible solution.  
 
The constraint handling problem is further complicated by the fact that GAs by nature 
are heuristic and generate enormous quantities of infeasible solutions which are 
pressure deficient. A good search strategy is not only limited to the feasible solution 
space but also focuses on infeasible solutions at the active constraint boundaries. This 
gives rise to the need to accurately gauge the performance of infeasible solutions. A 
boundary search technique will not be able to perform at its fullest potential without 
an accurate evaluation of the solutions. Unfortunately, conventional demand driven 
WDS simulation methods are incapable of simulating pressure deficient networks. 
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Due to the assumption that nodal demands are fully satisfied regardless of whether the 
system’s pressure is sufficient or deficient, demand driven analysis (DDA) is 
incapable of depicting the actual performance of a pressure deficient network, i.e. the 
exact nodal outflow cannot be quantified. The DDA pressure heads do not accurately 
represent the actual deficiency of the network. In fact, resulting pressure heads are 
often lower or even unrealistically large negative values, leading to an exaggeration of 
the network pressure deficiency. For example, a nodal demand that is approximately 
90% satisfied may still have a negative pressure head (Siew and Tanyimboh, 2011), 
giving a false impression that the nodal flow is zero. This once again highlights the 
complication and complexity involved in calibrating the penalty parameter. It is clear 
that the EA search can be easily misled if penalty parameters are not chosen properly.  
 
This paper presents a rigorous new approach that eradicates all the above mentioned 
difficulties. The use of penalty functions or other special constraint-handling 
techniques is obviated by involving a pressure dependent analysis (PDA) within a 
multi-objective optimization search. PDA (Tanyimboh et al. 1999) considers the 
relationship between pressure and nodal flow explicitly. The actual nodal flows and 
heads for both normal and pressure deficient networks can be simulated. This enables 
a more precise performance assessment of both feasible and infeasible solutions thus 
providing a far more robust means of steering the EA search toward the boundary 
between infeasible and feasible regions. The approach is referred to as the Penalty-
Free Multi-Objective Evolutionary Algorithm (PFMOEA) herein. The PFMOEA does 
not involve any parameters that require prior calibration and its application has proven 
to be robust and effective in leading the GA search to locate optimal or near optimal 
solutions. The next sections describe the PDA hydraulic simulator (in brief) and the 
multi-objective optimization method used in this approach.  
 

 

3 Pressure Dependent Analysis 

 
As mentioned earlier, stochastic (natured) evolutionary algorithms generate 
exceptionally high numbers of infeasible solutions which are inherently pressure 
deficient. Unlike conventional DDA, PDA can simulate these solutions in a more 
realistic manner as it explicitly takes account of the relationship between nodal 
outflows and pressures. The PFMOEA approach incorporates an extended version of 
EPANET 2 (Rossman, 2002) which is capable of PDA. This seamless enhanced 
version is termed EPANET-PDX (pressure-dependent extension) (Siew and 
Tanyimboh 2012). It integrates the continuous Tanyimboh and Templeman (2010) 
nodal pressure-flow function into the main set of hydraulic equations. Unlike other 
pressure-flow relationships, this function exhibits superior computational properties 
as it has no discontinuities in its function and derivatives thus providing a smooth 
transition between zero and partial nodal outflow and between partial and full demand 
satisfaction. Further details of this function can be found in Tanyimboh and 
Templeman (2010).  To facilitate the hydraulic solver algorithm’s convergence, a 
globally convergent strategy known as the line search and backtracking procedure is 
incorporated. This deterministic procedure optimizes the correction step size of the 
solution in each iteration to ensure that sufficient progress is being made by the 
algorithm. This further increases the robustness and computational efficiency of the 
algorithm.  
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A description of EPANET-PDX, with reference to EPANET 2 and the global gradient 
algorithm (Todini and Pilati 1988), and a review of PDA methods are available in 
Siew and Tanyimboh (2012). Also, a comparative analysis of several DDA 
computational solution methods for gas and water distribution networks is available in 
Brkic (2011). Recently Spiliotis and Tsakiris (2011) proposed a DDA implementation 
of the Newton-Raphson method using a pipe discharge formula derived by combining 
the Darcy-Weisbach pipe friction head loss formula and the Colebrook-White 
function for the friction factor (see e.g. Eq. 4.16 in Chadwick et al. 2004). The 
procedure (Brkic 2012, Spiliotis and Tsakiris  2012a) has the advantages that it avoids 
the iterative solution of the Colebrook-White function and benefits from the extra 
accuracy of the Darcy-Weisbach pipe friction head loss formula compared to 
empirical approximations such as the Hazen-Williams formula. It should be noted that 
the design optimization approach proposed here follows the convention that demands 
are known with reasonable certainty. Procedures that address uncertainties in the 
demands and other relevant parameters (Kumar et al. 2010, Spiliotis and Tsakiris 
2012b) are not considered here.  
 
We implemented the above-mentioned enhancements directly as additional 
subroutines within the EPANET 2 source code without involving any program 
interface or toolkit. It is worth mentioning that the full functionality of EPANET 2 is 
preserved. EPANET-PDX is highly robust and accurate in analyzing both normal and 
pressure deficient conditions. In terms of efficiency, extensive testing has shown that 
the computational performance of EPANET-PDX compares very favourably to 
EPANET 2 (Siew and Tanyimboh, 2011). With this said, one should bear in mind that 
EPANET 2 results are inaccurate, misleading or infeasible while analysing pressure 
deficient networks (Siew and Tanyimboh, 2011). The accuracy of the pressure 
dependent analysis results that EPANET-PDX produces has been validated and 
verified. The details can be found in Siew and Tanyimboh (2010).  
 
 
4 Penalty-Free Boundary-Convergent Multi-Objective Optimization Method 
 
The optimization of an engineering design involves multiple objectives which are 
often contradicting. For example, to maximise the available flow of the network and 
minimize its capital cost simultaneously are obviously opposing objectives.  The 
presence of these objectives gives rise to a set of compromised solutions known as the 
Pareto-optimal or non-dominated solutions in which no one solution in this set can be 
deemed to be superior over the others. The goal in a multi-objective optimization is to 
find as many diverse Pareto-optimal solutions as possible after which a higher-level 
decision is required to select one of them for implementation.  
 
The elitism preserving non-dominated sorting genetic algorithm NSGA II was chosen 
as the multi-objective optimization method for this research. The NSGA II can be 
described briefly as follows. First, a random parent population of size N is generated. 
Each member in the population is assigned a fitness level with regard to the objectives 
and then ranked on the basis of its non-domination level. Selection, crossover and 
mutation are then carried out to create a child population. Both parent and child 
populations are combined to form a population of size 2N before being sorted using 
the non-domination algorithm into several non-dominated fronts. Doing so ensures 
that elitism is maintained. The new population of size N is formed by first including 
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solutions belonging to the best non-dominated front of the combined population, and 
then subsequent non-dominated fronts in the order of their ranking. The last accepted 
front may contain more solutions than required to achieve a population of size N. If 
this occurs, the last front is sorted using a crowding distance operator that favours 
solutions with high diversity. This algorithm is repeated for several generations until a 
convergence criterion is satisfied. A detailed description of NSGA-II can be found in 
Deb et al. (2002). 
 
We wrote a basic NSGA II program in C++ language and coupled it directly to 
EPANET-PDX. The NSGA II model is binary coded and utilizes simple GA 
operators such as single bit-wise mutation, single point crossover and a simple 
tournament selection. This enables the performance of the proposed approach to be 
effectively gauged without involving any EA convergence enhancing operators. 
 
The proposed approach involves two primary objectives. The first objective is to 
minimise the network capital cost. The second objective is to ensure all nodal 
demands are satisfied. This is achieved by maximizing the total available flow of the 
most critical node in the network. Network costs normally fall in the range of millions 
while nodal outflow values are comparatively much smaller and may vary depending 
on the size of the network and mathematical units used. Due to the vast difference 
between the objective function values, directly applying both the network cost and the 
available flow as objective functions may yield technical hitches during the crowding 
distance comparison sorting stage of the NSGA II. This can potentially result in a 
biased judgement of distance for the solutions. To overcome this, both objective 
functions are normalised.  
 
Also, a new efficient boundary search technique was introduced to focus the 
PFMOEA search on near feasible solutions. This is done by exponentiating the 1st and 
2nd objective functions as shown in Equations 2 and 3 respectively. It is important to 
note that the exponent values remain the same throughout the optimization search. 
Hence, the objective functions for the PFMOEA are formulated as: 
 

Minimise       ( )2

1 CRF =                                    (2) 

 

Maximise ( )4

2 critDSRF =        (3) 

 
where F1 and F2 represent the first and second objective functions respectively; CR 
represents the cost ratio which can be expressed as: 

 

max

net

net

C

C
CR =           (4) 

 

where netC  and max

netC are the network cost and the maximum network cost in the 

population respectively. DSRcrit represents the demand satisfaction ratio of the most 
critical node, i.e. the node with the lowest residual pressure head and can be expressed 
as:  
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req

i

i

crit

crit

crit

Qn

Qn
DSR =          (5) 

 

where 
critiQn and req

icrit
Qn are the actual flow and demand for the critical node icrit. This 

way, both objective functions are normalised and have values between 0 and 1.0.  
 
Fig. 1a and Fig. 1b show typical Pareto-optimal fronts of the PFMOEA with and 
without the implementation of the boundary search respectively. It is worth observing 
that the former possesses a more enhanced front that is denser with solutions near the 
boundary region compared to the latter which has quite a uniform spread of diverse 
solutions encompassing a wider range of DSR and contains a much higher proportion 
of infeasible solutions. The boundary search approach applied here is only at its 
preliminary phase. More work is required to further develop the method. 
 
 
(Fig. 1a and Fig. 1b here) 
 
 
In the advanced stages of the evolutionary process, after merging the parent and child 
populations (each of which has size N), the number of solutions belonging to the 
Pareto-optimal front (best non-dominated front) may exceed the number of solutions 
required to maintain a population of size N. Since all solutions residing in the same 
front are assumed (by NSGA II) to have the same quality, to select exactly N 
population members, these solutions are sorted using the crowding distance operator 
and solutions with the lowest crowding distance (i.e. solutions located in crowded 
regions) are eliminated. This results in a front with a uniform spread of diverse 
solutions consisting of numerous highly infeasible solutions on one hand and 
numerous highly redundant solutions on the other hand. This approach totally 
contradicts the desirable effect of the boundary search strategy (i.e. a Pareto-optimal 
front with solutions highly concentrated near the boundary of the feasible region as 
shown in Fig. 1a) and potentially leads to the elimination of some of the best 
solutions.  
 
In the PFMOEA approach, 30% of the population consisting of the best (i.e. the least-
cost feasible) solutions in each generation are retained by assigning them each with an 
extremely high crowding distance value. The remaining solutions are subjected to the 
crowding distance operator for selection to fill the remaining population slots. In this 
way, feasible solutions near the boundary region are preserved and diversity amongst 
the population members is still maintained to a certain extent. For example, consider a 
hypothetical PFMOEA search with a fixed population size of 100 and a set of 120 
solutions in the best non-dominated front at the end of a generation. If there are 50 
feasible solutions available, the cheapest 30 (i.e. 30% of 100) will be retained. 70 
solutions out of the remaining 90 will then be selected based on their crowding 
distance to be combined with the 30 best solutions retained, forming a population size 
of 100 to be carried forward to the next generation.  
 
In hydraulic analysis, two basic constraints need to be simultaneously satisfied, 
namely the mass conservation and the energy conservation constraints. The mass 
conservation constraint requires that the sum of flows at each node must be zero. The 
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energy conservation constraint requires that the total head loss along a path should be 
equal to the difference in head between its starting and ending nodes. Herein, the 
Hazen-Williams (HW) equation is used to approximate the head loss and can be 
described as: 
 

b

j

a

j

j

jj
DC

Qp
Lh

1













= ω          (6) 

 
in which ω is a dimensionless conversion factor whose numerical value depends on 
the units used; hj, Lj, Qpj, Cj and Dj represent the head loss, length, flow rate, HW 
coefficient and internal diameter for pipe j respectively; a and b are coefficients with 
values 1.852 and 4.870 respectively.  
 
Several researchers use different conversion factors ω. Similarly to Savic and Walters 
(1997), with the purpose of covering the range of published values and enabling a 
rigorous comparison of optimal solutions obtained by other researchers in the 
literature, results presented in this paper are based on two ω values i.e. 10.5088 and 
10.9031.  
 
 
5 Examples, Results and Discussion 
 
The PFMOEA is applied to three well known optimization problems, i.e. the design of 
the Two-Loop and Hanoi WDSs, and the expansion of the New York Tunnels (Fig. 
2a, Fig. 2b and Fig. 2c respectively). It is no doubt that the three benchmarks are 
simple and do not fully depict the actual problems of real-world WDSs. However, 
these networks have been extensively analyzed by numerous researchers using 
various methods and hence, the comparison of the PFMOEA results to the best 
optimum solutions obtained from the literature would serve as a good ground in 
demonstrating the effectiveness of the proposed optimization approach. It is worth 
clarifying that no attempt was made to optimize the mutation rate herein. For the three 
examples presented, the mutation rates applied vary from 0.005 to 0.02 based on 
typical values obtained from the literature. 
 
 
(Fig. 2a, Fig. 2b and Fig. 2c here) 
 

 
5.1 Two-Loop Network                                      
                                                                
Fig. 2a shows the layout of the Two-Loop network. This single source network 
consists of eight pipes of length 1000m and six demand nodes. The minimum pressure 
requirement for all nodes is defined as 30m. An HW roughness coefficient of 130 is 
used for new pipes. A set of 14 commercial pipe diameters is used in this design 
optimization problem. The diameters and costs of these pipes and node data can be 
found in Alperovits and Shamir (1977).  
 
 
(Table 1 here) 
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Solutions found in previous studies are presented in Table 1. Additional studies can be 
found in Ekinci and Kunak (2009). Results, i.e. pipe diameters are presented in 
imperial units to enable an easy comparison. Savic and Walters (1997) were probably 
the only researchers who reported the solution with ω=10.9031; their least cost 
solution of $420,000 was obtained within a total of 250,000 function evaluations.  
 
For this small network, it took the PFMOEA only 10 random runs each (i.e. 
ω=10.5088 and ω=10.9031) to obtain the least cost design.  A maximum of 10,000 
function evaluations were allowed per run. The probability of crossover and mutation 
were set to 1.0 and 0.005 respectively. The PFMOEA identified both optimum 
solutions of $419,000 within 2,200 function evaluations and $420,000 within 2,600 
function evaluations which respectively represent small fractions of 1.49×10-4% and 
1.76×10-4% of the entire solution space (i.e. 148). Compared to the algorithms with 
the smallest numbers of function evaluations in the literature, the proposed approach 
required significantly less computational effort in obtaining the least cost feasible 
solution, i.e. 29.5% of that required by Wu et al. (2001) for ω=10.5088 (7,467 
function evaluations) and only 1.04% of that required by Savic and Walters (1997) for 
ω=10.9031 (250,000 function evaluations).  
 
Fig. 3 shows the rate of improvement of the PFMOEA for both solutions obtained. 
The overall performances of the PFMOEA were rather similar for both ω=10.5088 
and ω=10.9031 cases. Though the former began with an initial population of solutions 
with much higher costs, the algorithm progressed rapidly within the first six 
generations and still succeeded in locating the optimal solution within an impressively 
low function evaluations count. Fig. 4 shows the pareto-optimal fronts generated for 
the two ω values (for the 10 random runs). All the fronts are virtually the same 
suggesting that the PFMOEA is robust and exhibits a consistent performance. 
 
 
(Fig. 3 here) 
 
 
(Fig. 4 here) 
 
 
5.2 Hanoi network 
 
The Hanoi network (Fig. 2b) consists of 34 pipes, 32 nodes and a single source of 
elevation 100m. The minimum head at all demand nodes is fixed at 30m. A set of six 
commercially available pipe diameters (12, 16, 20, 24, 30 and 40 in.) is utilised in the 
design optimization of the system with the cost of each pipe calculated based on the 
cost function Ci=1.1×Li×Di

1.5, where C ($),  L (m) and D (in.) are the cost, length and 
diameter of commercial pipe i respectively. All new pipes are assumed to have a HW 
roughness coefficient of 130. The network input data can be found in Fujiwara and 
Khang (1990).  
 
Solutions achieved by other researchers are presented in Table 2. Cunha and Sousa 
(1999) identified the solution of $6.056 million for ω=10.5088 while Wu et al. (2001) 
reported the solution with capital cost of $6.182 million for ω=10.9031. These 
solutions are perhaps the cheapest feasible solutions obtained (from EA searches 
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which involve the entire solution space) within the lowest numbers of function 
evaluations in the literature hitherto. Mahendra et al. (2008) achieved the solutions of 
$6.056 million (ω=10.5088) and $6.190 million (ω=10.9031) both within a low 
function evaluation of 18,000. However, it is essential to highlight that a search space 
reduction technique was implemented and only selective candidate pipe diameters 
(from the 6 commercial pipe sizes) were used. Hence, the GA search only involved 
2.351×1019 possible solutions which is approximately 8.2×10-6 % of the entire solution 
space (i.e. 634 = 2.865×1026). Also, it includes multiple GA-enhancing techniques and 
is best suited to systems with a single demand pattern. 
 
For this network, 60 runs each starting from a different initial population (randomly 
generated) were conducted for each ω value. A total of 200,000 function evaluations 
were permitted per run. The crossover probability was fixed to 1.0 and the range of 
mutation probability used was between 0.005 and 0.02. The PFMOEA succeeded in 
identifying the least cost feasible solutions for both ω values with 51,000 function 
evaluations for the solution of $6.056 million (for ω=10.5088) and 100,000 function 
evaluations for the solution of $6.182 million (for ω=10.9031) which respectively are 
equivalent to 1.78×10-20 % and 3.49×10-20 % of the entire search space. These values 
are lower than what was achieved by Mahendra et al. (2008), i.e. 7.656×10-14 % of the 
reduced solution space. Compared to the 53,000 function evaluations by Cunha and 
Sousa (1999) and 113,626 function evaluations by Wu et al. (2001), this represents an 
approximate improvement of 3.77% and 12% for ω=10.5088 and ω=10.9031 
respectively. It is worth mentioning that the PFMOEA also obtained the solution of 
$6.19021 million which is a similar design to the $6.190 million solution by 
Mahendra et al. (2008) (all pipe diameters are identical to Mahendra et al. (2008) 
except for pipe 27 which is 16in) with 49,700 function evaluations.  
 
 
(Table 2 here) 
 
 
The least cost solutions presented by Mahendra et al. (2008) and the PFMOEA were 
simulated using both EPANET-PDX and EPANET 2 to confirm the nodal pressure 
heads. Pressure heads for the four most critical nodes are presented in Table 3. For the 
solution with ω=10.9031 by Mahendra et al. (2008), it was observed (Table 3) that the 
head at node 27 violates the minimum nodal pressure requirement. All optimum 
solutions identified by PFMOEA were feasible in that all nodal heads (generated by 
EPANET-PDX and EPANET 2) were above the minimum pressure requirement.  
 
 
(Table 3 here) 
 
 
Table 4 shows the least cost solutions of the six best PFMOEA runs for each of the 
two ω values used here. The critical nodal pressure heads presented confirm that all 
solutions meet the minimum required pressure and are fully feasible. The PFMOEA 
succeeded in locating the optimal solution four times both for ω=10.5088 and 
ω=10.9031. The costs of the other solutions obtained (as shown in Table 4) were only 
slightly higher (<1%) compared to the lowest cost solutions reported in the literature. 
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This along with the low number of function evaluations (Table 4) demonstrates that 
the PFMOEA is highly capable of locating near optimal solutions very quickly.  
 
 
(Table 4 here) 
 
 
5.3 New York Tunnels 
 
Fig. 2c shows the layout of the New York tunnels. The network is fed from a single 
fixed-head source providing a head of 91.44m (300 ft) and consists of 20 demand 
nodes and 21 pipes the details of which can be found in Murphy et al. (1993). The 
objective of this optimization problem is to expand the existing tunnels by means of 
pipe paralleling so that the projected demands and pressure requirements can be met.  
The minimum head constraints are 79.248 m (260 ft) for node 16, 83.149 m (272 ft) 
for node 17 and 77.724 m (255 ft) for the remaining 18 nodes. There are 15 available 
diameters to be considered and the “do nothing” option, forming a total solution space 
of 1621=1.93×1025 possible network designs.  
 
The best solutions reported in the literature by other authors using GA with various 
constraint handling methods are presented in Table 5. Vairavamoorthy and Ali (2000) 
reported a solution with a low cost of $37.10 million. However, the pipe diameter of 
100in. used in this solution is not in the set of commercial pipe sizes allocated for this 
optimization problem. Savic and Walters (1997) reported the least cost solutions in 
the literature hitherto, i.e. $37.13 million for ω=10.5088 and $40.42 million for 
ω=10.9031.  The solution of $37.13 million was also identified by Farmani et al. 
(2005) within the lowest reported number of function evaluations so far. To the 
knowledge of the authors, besides Savic and Walters (1997), no other previous studies 
in the literature reported solutions using ω=10.9031. 
 
 
(Table 5 here) 
 
 
The solution space of the New York Tunnels problem is approximately one order of 
magnitude smaller than that of the Hanoi network. Hence, only 30 runs were 
conducted for each ω value. A total of 100,000 function evaluations were permitted 
per run. The crossover probability was fixed to 1.0 and the mutation probability used 
was between 0.005 and 0.01. For this example, the PFMOEA succeeded in locating 
the optimal solutions (identical to that of Savic and Walters (1997)) but with 
remarkably fewer function evaluations in comparison to the rest of the algorithms 
presented, i.e. 7,200 for ω=10.5088 and 17,800 for ω =10.9031. These respectively 
represent extremely small fractions of 3.73×10-22 % and 9.22×10-22 % of the total 
number of pipe size combinations (1621). In comparison to the algorithms with the 
smallest numbers of function evaluations, the computational effort (function 
evaluations) required by the PFMOEA was only 27.33% of that required by Farmani 
et al. (2005) for ω=10.5088 and 1.78% of that required by Savic and Walters (1997) 
for ω=10.9031.  
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It is also worth highlighting that within the 30 random runs executed the optimum 
solution of $37.13 million was located twice for ω=10.5088; the second time within 
8,200 function evaluations which is also much smaller than the 26,340 function 
evaluations by Farmani et al. (2005). Both optimal solutions obtained by the 
PFMOEA were simulated by EPANET-PDX and EPANET 2 to reconfirm their 
feasibility. Results (critical node pressure heads) are presented in imperial units to 
enable an easy comparison. It can be concluded from Table 6 that all nodal pressure 
heads meet the minimum pressure requirement.  
   
 
(Table 6 here) 
 
 
Table 7 shows the cost of five best feasible solutions generated from the best 
PFMOEA run for this network for ω=10.5088 and ω=10.9031. The costs of these 
solutions were very close to the least cost solutions reported in the literature. This 
suggests that the PFMOEA is capable of obtaining a Pareto-optimal front consisting 
of non-dominated solutions which are highly comparable to the best (least cost) 
solution. A good range of solutions is therefore provided allowing for flexibility in 
choosing the final design for implementation during a higher level decision making 
stage which may involve other measures such as reliability. 
 
 
(Table 7 here) 
 
 
5.4 Discussion 
 
The CPU times required by the PFMOEA to obtain the best reported solutions for all 
the benchmark networks are presented in Table 8. The PFMOEA was executed using 
an Intel Core 2 Duo CPU 2.66 GHz personal computer with 3.23 GB RAM.  
 
 
(Table 8 here) 
 
 
To further analyse the efficiency and robustness of the approach, the PFMOEA was 
also formulated with the second objective function being the network DSR to be 
maximized. Table 9 compares the performance of the PFMOEA with two different 2nd 
objective functions, i.e. maximizing the critical (i.e. smallest) nodal DSR and 
maximizing the network DSR. For the latter, the PFMOEA succeeded in locating all 
the least cost designs in the literature as well but at a much higher computational cost.  
 
 
(Table 9 here) 
 
 
The difference in both formulations lies in the fact that for solutions near the 
feasibility boundary, the ultimate deciding factor concerning the feasibility of a 
solution is based on the performance of the critical node, i.e. the worst performing 



 15 

node.  The network DSR only represents the average performance of all nodes taken 
together. Most of the time, the performance of the critical node is overshadowed by 
other better performing nodes.  For example, for a hypothetical network containing 
100 nodes, consider a hypothetical solution which is made up of 99 fully satisfied 
nodes (i.e. DSR = 1) and 1 node with no outflow (i.e. DSR = 0). Though quite 
infeasible, this solution has an overall network DSR of 0.99 and would be ranked 
highly in terms of the network DSR. On the other hand, by utilizing the critical node 
DSR, the worst performing node is perceptibly distinguished amongst other nodes and 
any solution that has very poor nodal performances will incur a low fitness value. 
This way the algorithm is better able to identify quickly intermediate solutions that 
are potentially viable. This distinction (of the worst performing node) may not be 
particularly significant in the early phase of the evolution process. However, it 
becomes increasingly vital as solutions evolve through generations (especially near 
the end of the optimization run) and when the population pool begins to be dense with 
near-feasible near-optimal solutions. Normally, this is shown by a noticeable plateau 
in the graph depicting the progress of the algorithm. For example, the progress of the 
best runs for the Two-loop network (ω =10.5088) using both formulations were 
compared in detail as shown in Fig. 5. The PFMOEA based on the critical node DSR 
formulation will be referred to as PFMOEA 1; the PFMOEA based on the network 
DSR formulation will be referred to as PFMOEA 2. 
 
 
(Fig. 5 here) 
 
 
Both PFMOEA 1 and 2 started off with similar solutions and experienced rapid 
improvements (reduction in network cost) in the early phase of the evolution. It is 
worth observing that even at the early evolution stage the progress made by PFMOEA 
1 is superior to that of PFMOEA 2. The point which marked the significant difference 
between formulations began shortly after 1,800 function evaluations where PFMOEA 
1 continued to progress and obtained the optimal solution at 2,200 function 
evaluations while PFMOEA 2 was trapped in a plateau for a further 18,500 function 
evaluations before locating the optimal solution. The computational effort using the 
former was only 10.83% of the latter. This clearly shows that the critical node DSR is 
a better criterion in the decision process as it enforces more pressure on the search to 
stay close to the boundary as defined by the active constraints where “just feasible” 
solutions are located, i.e. solutions with low or zero redundancy. The same outcome is 
observed for both the Hanoi WDS and New York tunnels examples. The progress 
graphs can be found in Appendix A. Nevertheless, the fact that both PFMOEA 
formulations succeeded in locating the least cost designs for all networks 
demonstrates that the approach is highly robust.  
 
It is worth highlighting that the PFMOEA has not only proven to be robust and 
efficient, its concept is extremely simple and straightforward to implement compared 
to other constraint handling techniques published in the literature. Not only does it not 
involve case-sensitive and/or network-specific parameters that require time-
consuming calibration, the proposed algorithm does not require any complicated 
mechanisms. The fitness of each solution is essentially represented by the PDA which 
by itself serves as an accurate performance indicator of the solution. Infeasible 
solutions are assigned with accurate fitness and are allowed to compete fairly in the 
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evolutionary process. With the accurate performance evaluation of both feasible and 
infeasible solutions, the active constraint boundaries can be precisely determined with 
literally no additional computational effort, enabling the feasibility boundary 
convergent strategy to function effectively.  
 
 
6 Conclusions 
 
This paper proposes a new penalty-free multi-objective evolutionary optimization 
approach for WDSs. The described PFMOEA combines a multi-objective 
evolutionary algorithm with pressure dependent analysis (PDA). PDA is capable of 
simulating infeasible solutions accurately, providing the means to quickly and 
accurately identify the feasible region of the solution space without the need for 
penalty functions or other special constraint handling techniques. The algorithm has 
been applied to three benchmark networks and the results have been compared in 
detail with those obtained using other constraint handling algorithms from the 
literature. For the sample networks, it is demonstrated that the algorithm is 
exceedingly efficient and robust with the capability of finding the least cost solutions 
reported in the literature with considerably fewer function evaluations.  
 
The computational efficiency of the algorithm is partly due to the accurate 
performance evaluation of solutions. Infeasible solutions are accurately simulated and 
this enhances the boundary search techniques applied including the ability to focus the 
search around the active constraints. The significant advantage of this method over 
previous methods is that it eliminates the need for ad-hoc penalty functions or 
additional “boundary search” parameters. Hence there is no need for any parameter 
fine tuning or trial and error runs. Therefore, conceptually, the proposed formulation 
is the simplest by far. The initial results presented herein are very promising. More 
testing is required to assess the computational efficiency more accurately. Ongoing 
research includes extension of the new approach to tank sizing and location problems 
and incorporation of operating costs including pumping costs.  
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Boundary region 

Fig. 1a Pareto optimal front with boundary search 

Fig. 1b Pareto optimal front without boundary search 

Fig. 2a Layout of Two-Loop network 
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Fig. 2b Layout of Hanoi network 

Fig. 2c Layout of New York Tunnels 
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Fig. 4 Pareto-optimal fronts for the Two-loop network 
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Fig. 5 Progress of the PFMOEA using different formulations for the  
Two Loop Network 
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Tables 
 
 
Table 1 Solutions of the Two-Loop network  

Diameter (in) 

ω = 10.5088 ω = 10.9031 

Pipe Savic & 
Walters 
(1997) 

Cunha & 
Sousa 
(1999) 

Wu et al. 
(2001) 

Eusuff & 
Lansey 
(2003) 

PFMOEA 
Savic & 
Walters 
(1997) 

PFMOEA 

1 18 18 18 18 18 20 20 
2 10 10 10 10 10 10 10 
3 16 16 16 16 16 16 16 
4 4 4 4 4 4 1 1 
5 16 16 16 16 16 14 14 
6 10 10 10 10 10 10 10 
7 10 10 10 10 10 10 10 
8 1 1 1 1 1 1 1 

Method GA SA GA SFLA GA GA GA 

Cost  ($) 419,000 419,000 419,000 419,000 419,000 420,000 420,000 

Eval. 250,000 25,000 7,467 11,323 2,200 250,000 2,600 

SA represents simulated annealing. 
SFLA represents shuffled frog leaping algorithm. 
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Table 2 Solutions of the Hanoi Network 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diameter (in) 

ω = 10.5088 ω = 10.9031 

Pipe Cunha 
& 

Sousa  
(1999) 

Vairava- 
moorthy 

& Ali 
(2000) 

Wu & 
Walski 
(2005) 

Geem 
(2006) 

*Mahendra 
et al. 

(2008) 
PFMOEA 

Wu et 
al. 

(2001) 

†*Mahendra 
et al.  

(2008) 
PFMOEA 

1 - 8 40 40 40 40 40 40 40 40 40 

9 40 40 40 40 40 40 40 30 40 

10 30 30 30 30 30 30 30 30 30 

11 24 24 24 24 24 24 24 30 24 

12 24 24 24 24 24 24 24 24 24 

13 20 20 20 20 20 20 16 16 16 

14 16 16 16 16 16 16 12 12 12 

15  12 12 12 12 12 12 12 12 12 

16 12 12 12 12 12 12 12 16 12 

17 16 16 16 16 16 16 20 20 20 

18 - 19 20 20 20 20 20 20 24 24 24 

20 40 40 40 40 40 40 40 40 40 

21 20 20 20 20 20 20 20 20 20 

22 12 12 12 12 12 12 12 12 12 

23 40 40 40 40 40 40 40 40 40 

24 - 25 30 30 30 30 30 30 30 30 30 

26 20 20 20 20 20 20 24 20 24 

27 - 28 12 12 12 12 12 12 12 12 12 

29 16 16 16 16 16 16 16 16 16 

30 12 12 12 12 12 12 16 12 16 

31 12 12 12 12 12 12 12 12 12 

32 16 16 16 16 16 16 16 16 16 

33 16 16 16 16 16 16 16 20 16 

34 24 24 24 24 24 24 24 24 24 

Method SA GA GA HS GA GA GA GA GA 

Cost 
($M) 

6.056 6.056 6.056 6.056 6.056 6.056 6.182 6.190 6.182 

Eval. 53,000 160,000 150,000 200,000 18,000 51,000 113,626 18,000 100,000 

HS and SA represent harmony search and simulated annealing evolutionary algorithm respectively. 
* Selective diameters used (not the full set of 6 commercial pipe sizes). 

† Infeasible solution. 
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Table 3 Critical Node Pressure Heads for the Hanoi Network 

Cost ($ Million) 6.056 6.190 6.19021 6.182 

ω  10.5088 10.9031 

Approach 
PFMOEA and 

Mahendra et al. 
(2008) 

Mahendra  
et al. (2008) 

PFMOEA 

Nodes Heads (m) 

27 
30.207 

(30.170) 
*29.984 
(29.944) 

30.331 
(30.291) 

30.413 
(30.377) 

29 
30.260 

(30.220) 
30.186 

(30.146) 
30.088 

(30.046) 
30.681 

(30.646) 

30 
30.521 

(30.483) 
30.703 

(30.664) 
30.596 

(30.556) 
30.225 

(30.188) 

31 
30.802 

(30.764) 
31.019 

(30.981) 
30.912 

(30.872) 
30.376 

(30.339) 

* Infeasible solution i.e. Hni < 30 m 
   Critical node heads generated by EPANET 2 are shown in parentheses 

 
 
Table 4 Solutions from the Best Six PFMOEA Runs for the Hanoi Network 

ω =10.5088  ω =10.9031 
Best 
Runs Costs 

 ($ Million) 
Function 

Evaluations 
Critical Nodal 

Heads (m) 
 

Costs  
($ Million) 

Function 
Evaluations 

Critical 
Nodal Heads 

1 6.056 51,000 30.207  6.182 100,000 30.225 

2 6.056 75,400 30.207  6.182 100,100 30.225 

3 6.056 87,000 30.207  6.182 111,400 30.225 

4 6.056 167,400 30.207  6.182 136,700 30.225 

5 6.064 69,900 30.156  6.187 78,600 30.018 

6 6.072 46,200 30.271  6.19021 49,700 30.046 

 
 
Table 5 Solutions of the New York Tunnels 

Diameter (in) 

ω = 10.5088 ω =10.6792 ω =10.9031 

Pipe Savic & 
Walters 
(1997) 

Vaira-
vamoor-thy 

& Ali 
(2000) 

Farm-
ani et 

al. 
(2005) 

PFMOEA 

Monte-
sinos et 

al. 
(1999) 

Afshar 
& 

Marino 
(2007) 

Wu & 
Simp-

son 
(2002) 

Savic & 
Walters 
(1997) 

PFMOEA 

7 108 96 96 108 - 144 - - - 

15 - - - - 120 - 120 144 144 

16 96 *100 96 96 84 96 84 84 84 

17 96 96 96 96 96 96 96 96 96 

18 84 84 84 84 84 84 84 84 84 

19 72 72 72 72 72 72 72 72 72 

21 72 72 72 72 72 72 72 72 72 

Cost 
($M) 

37.13 37.10 37.13 37.13 38.80 38.65 38.80 40.42 40.42 

Eval. 
1,000, 
000 

80,000 26,340 7,200 18,300 13,420 22,500 
1,000, 

000 
17,800 

* Pipe diameter 100in is not in the set of commercial pipe sizes allocated in this optimization problem 
The dash (-) represents the do-nothing option. Pipe sizes not shown were unchanged, corresponding to the do-nothing option. 
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Table 6 Critical Node Pressure Heads for the New York Tunnels 

ω = 10.5088 ω = 10.9031 

Node 

Minimum 
Required 
Head (ft) 

EPANET Head 
(ft) 

EPANET-PDX 
Head (ft) 

EPANET Head 
(ft) 

EPANET-PDX 
Head (ft) 

      
16 260.0 260.161 260.212 260.282 260.332 
17 272.8 272.861 272.89 272.882 272.912 
19 255.0 255.206 255.266 255.398 255.458 
      

 
 
 
Table 7 Solutions from the best PFMOEA Run for the New York Tunnels 

ω =10.5088   ω =10.9031 

Solution Cost 
($ Million) 

Critical 
Node 

Head 
(m) 

 

  
Cost 

($ Million) 
Critical 
Node 

Head 
(m) 

1  37.13* 17 83.1769    40.42* 17 83.1836 

2 37.62 17 83.2101   41.12 17 83.1866 

3 38.13 17 83.2391   41.13 17 83.1896 

4 38.80 17 83.2412   41.29 17 83.2719 

5 38.94 16 79.3455   41.96 17 83.2750 

* Least cost solution reported in the literature. 
Required head for node 17 is 83.149m. 
Required Head for node 16 is 79.248m. 

 
 
Table 8 Computational time required by the PFMOEA to obtain the best reported  
              solutions  

Computational time (seconds) 
Network 

ω =10.5088 ω =10.9031 

Two Loops 19.2 22.8 

Hanoi 352.1 703.4 

New York Tunnels 59.2 143.7 

 
 
Table 9 Performance of the PFMOEA with different 2nd objective functions 

Number of Function Evaluations 
Network ω Cost ($) Maximise critical nodal 

DSR 
Maximize network DSR 

10.5088 4.190×105 2,200 20,300 
Two Loops 

10.9031 4.200×105 2,600 4,800 

     
10.5088 6.056×106 51,000 258,200 

Hanoi 
10.9031 6.182×106 100,000 336,300 

     
10.5088 37.13×106 7,200 554,400 New York 

Tunnels 10.9031 40.42×106 17,800 28,200 
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Fig. 6 Comparison of the evolutionary rate of cost improvement for the critical-node       
and network-wide DSR formulations 

Progress of PFMOEA for Hanoi network 
(ω = 10.5088) 

Progress of PFMOEA for Hanoi network 

(ω = 10.9031) 

Progress of PFMOEA for New York tunnels 
(ω = 10.5088) 

Progress of PFMOEA for New York tunnels 

(ω = 10.9031) 

Progress of PFMOEA for Two Loop network 

(ω = 10.5088) 

Progress of PFMOEA for Two Loop network 

(ω = 10.9031) 
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