1,320 research outputs found
Desperately Seeking a Communicative Approach: English Pronunciation in a Sample of French and Polish Secondary School Textbooks
The first part of this paper analyses pronunciation exercises in a representative sample of textbooks from each country. Pronunciation exercises were classified based on the degree to which they mobilize communicative abilities, according to the five categories of a Communicative Framework for teaching pronunciation (Celce-Murcia et al., 2010, p45): Description & analysis, Listening discrimination, Controlled practice, Guided practice, Communicative practice. The first category involves little risk-taking by the learner, usually focusses on form and allows little freedom. At the other end of the spectrum, communicative practice involves a focus on meaning and interaction, with the concomitant greater freedom to make mistakes. The exercises were then analysed to see which segmental and/or prosodic features they favoured and to what extent
Novel lactoferrin-loaded alginate microbeads display anti-Clostridium difficile defence properties
Assessment of chromium(VI) release from 848 jewellery items by use of a diphenylcarbazide spot test
The Green Bank Northern Celestial Cap Pulsar Survey II: The Discovery and Timing of Ten Pulsars
We present timing solutions for ten pulsars discovered in 350 MHz searches
with the Green Bank Telescope. Nine of these were discovered in the Green Bank
Northern Celestial Cap survey and one was discovered by students in the Pulsar
Search Collaboratory program in analysis of drift-scan data. Following
discovery and confirmation with the Green Bank Telescope, timing has yielded
phase-connected solutions with high precision measurements of rotational and
astrometric parameters. Eight of the pulsars are slow and isolated, including
PSR J09302301, a pulsar with nulling fraction lower limit of 30\% and
nulling timescale of seconds to minutes. This pulsar also shows evidence of
mode changing. The remaining two pulsars have undergone recycling, accreting
material from binary companions, resulting in higher spin frequencies. PSR
J05572948 is an isolated, 44 \rm{ms} pulsar that has been partially recycled
and is likely a former member of a binary system which was disrupted by a
second supernova. The paucity of such so-called `disrupted binary pulsars'
(DRPs) compared to double neutron star (DNS) binaries can be used to test
current evolutionary scenarios, especially the kicks imparted on the neutron
stars in the second supernova. There is some evidence that DRPs have larger
space velocities, which could explain their small numbers. PSR J1806+2819 is a
15 \rm{ms} pulsar in a 44 day orbit with a low mass white dwarf companion. We
did not detect the companion in archival optical data, indicating that it must
be older than 1200 Myr.Comment: 9 pages, 5 figure
Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set
When galaxies merge, the supermassive black holes in their centers may form
binaries and, during the process of merger, emit low-frequency gravitational
radiation in the process. In this paper we consider the galaxy 3C66B, which was
used as the target of the first multi-messenger search for gravitational waves.
Due to the observed periodicities present in the photometric and astrometric
data of the source of the source, it has been theorized to contain a
supermassive black hole binary. Its apparent 1.05-year orbital period would
place the gravitational wave emission directly in the pulsar timing band. Since
the first pulsar timing array study of 3C66B, revised models of the source have
been published, and timing array sensitivities and techniques have improved
dramatically. With these advances, we further constrain the chirp mass of the
potential supermassive black hole binary in 3C66B to less than using data from the NANOGrav 11-year data set. This
upper limit provides a factor of 1.6 improvement over previous limits, and a
factor of 4.3 over the first search done. Nevertheless, the most recent orbital
model for the source is still consistent with our limit from pulsar timing
array data. In addition, we are able to quantify the improvement made by the
inclusion of source properties gleaned from electromagnetic data to `blind'
pulsar timing array searches. With these methods, it is apparent that it is not
necessary to obtain exact a priori knowledge of the period of a binary to gain
meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
The Relationship Between Background Music and Symptomatology in Adults Diagnosed With ADHD
Individuals who have been diagnosed with attention-deficit/hyperactivity disorder (ADHD) often experience symptoms that interfere with their daily functioning, concentration, and performance at school, at home, in the workplace, and in social settings. Previous research has been conducted into the effects of background music on various facets of learning, mostly with populations of children and individuals without ADHD. The focus in this clinical research project was to examine the relationship between background music and symptomatology in 18 adult students between the ages of 18 and 26 years who had been diagnosed with any type of ADHD. Results did not indicate significance toward the primary hypothesis that those who completed a learning task while listening to background music would report fewer symptoms of ADHD after the task compared to those who completed the task in silence. However, several patterns from ANCOVA analyses indicated significance toward the secondary hypothesis that gender differences would affect individuals’ perception and endorsement of ADHD symptomatology. Female participants consistently reported greater ADHD symptomatology than male participants. From the findings of this study, it is recommended that mental health clinicians use caution when diagnosing and treating ADHD across the age and gender spectrums
The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
Observations indicate that nearly all galaxies contain supermassive black
holes (SMBHs) at their centers. When galaxies merge, their component black
holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves
(GWs) that can be detected by pulsar timing arrays (PTAs). We have searched the
recently-released North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) 11-year data set for GWs from individual SMBHBs in circular orbits.
As we did not find strong evidence for GWs in our data, we placed 95\% upper
limits on the strength of GWs from such sources as a function of GW frequency
and sky location. We placed a sky-averaged upper limit on the GW strain of at nHz. We also developed a
technique to determine the significance of a particular signal in each pulsar
using ``dropout' parameters as a way of identifying spurious signals in
measurements from individual pulsars. We used our upper limits on the GW strain
to place lower limits on the distances to individual SMBHBs. At the
most-sensitive sky location, we ruled out SMBHBs emitting GWs with
nHz within 120 Mpc for , and
within 5.5 Gpc for . We also determined that
there are no SMBHBs with emitting
GWs in the Virgo Cluster. Finally, we estimated the number of potentially
detectable sources given our current strain upper limits based on galaxies in
Two Micron All-Sky Survey (2MASS) and merger rates from the Illustris
cosmological simulation project. Only 34 out of 75,000 realizations of the
local Universe contained a detectable source, from which we concluded it was
unsurprising that we did not detect any individual sources given our current
sensitivity to GWs.Comment: 10 pages, 11 figures. Accepted by Astrophysical Journal. Please send
any comments/questions to S. J. Vigeland ([email protected]
- …
