82 research outputs found

    Capturing human intelligence for modelling cognitive-based clinical decision support agents

    Get PDF
    The success of intelligent agents in clinical care depends on the degree to which they represent and work with human decision makers. This is particularly important in the domain of clinical risk assessment where such agents either conduct the task of risk evaluation or support human clinicians with the task. This paper provides insights into how to understand and capture the cognitive processes used by clinicians when collecting the most important data about a person’s risks. It attempts to create some theoretical foundations for developing clinically justifiable and reliable decision support systems for initial risk screening. The idea is to direct an assessor to the most informative next question depending on what has already been asked using a mixture of probabilities and heuristics. The method was tested on anonymous mental health data collected by the GRiST risk and safety tool (www.egrist.org)

    Estimation of heterogeneity in malaria transmission by stochastic modelling of apparent deviations from mass action kinetics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantifying heterogeneity in malaria transmission is a prerequisite for accurate predictive mathematical models, but the variance in field measurements of exposure overestimates true micro-heterogeneity because it is inflated to an uncertain extent by sampling variation. Descriptions of field data also suggest that the rate of <it>Plasmodium falciparum </it>infection is not proportional to the intensity of challenge by infectious vectors. This appears to violate the principle of mass action that is implied by malaria biology. Micro-heterogeneity may be the reason for this anomaly. It is proposed that the level of micro-heterogeneity can be estimated from statistical models that estimate the amount of variation in transmission most compatible with a mass-action model for the relationship of infection to exposure.</p> <p>Methods</p> <p>The relationship between the entomological inoculation rate (EIR) for falciparum malaria and infection risk was reanalysed using published data for cohorts of children in Saradidi (western Kenya). Infection risk was treated as binomially distributed, and measurement-error (Poisson and negative binomial) models were considered for the EIR. Models were fitted using Bayesian Markov chain Monte Carlo algorithms and model fit compared for models that assume either mass-action kinetics, facilitation, competition or saturation of the infection process with increasing EIR.</p> <p>Results</p> <p>The proportion of inocula that resulted in infection in Saradidi was inversely related to the measured intensity of challenge. Models of facilitation showed, therefore, a poor fit to the data. When sampling error in the EIR was neglected, either competition or saturation needed to be incorporated in the model in order to give a good fit. Negative binomial models for the error in exposure could achieve a comparable fit while incorporating the more parsimonious and biologically plausible mass action assumption. Models that assume negative binomial micro-heterogeneity predict lower incidence of infection at a given average exposure than do those assuming exposure to be uniform. The negative binomial model moreover provides an estimate of the variance of the within-cohort distribution of the EIR and hence of within cohort heterogeneity in exposure.</p> <p>Conclusion</p> <p>Apparent deviations from mass action kinetics in parasite transmission can arise from spatial and temporal heterogeneity in the inoculation rate, and from imprecision in its measurement. For parasites like <it>P. falciparum</it>, where there is no plausible biological rationale for deviations from mass action, this provides a strategy for estimating true levels of heterogeneity, since if mass-action is assumed, the within-population variance in exposure becomes identifiable in cohort studies relating infection to transmission intensity. Statistical analyses relating infection to exposure thus provide a valid general approach for estimating heterogeneity in transmission but only when they incorporate mass action kinetics and shrinkage estimates of exposure. Such analyses make it possible to include realistic levels of heterogeneity in dynamic models that predict the impact of control measures on transmission intensity.</p

    Failure of a patient-centered intervention to substantially increase the identification and referral for-treatment of ambulatory emergency department patients with occult psychiatric conditions: a randomized trial [ISRCTN61514736]

    Get PDF
    BACKGROUND: We previously demonstrated that a computerized psychiatric screening interview (the PRIME-MD) can be used in the Emergency Department (ED) waiting room to identify patients with mental illness. In that trial, however, informing the ED physician of the PRIME-MD results did not increase the frequency of psychiatric diagnosis, consultation or referral. We conducted this study to determine whether telling the patient and physician the PRIME-MD result would result in the majority of PRIME-MD-diagnosed patients being directed toward treatment for their mental illness. METHODS: In this single-site RCT, consenting patients with non-specific somatic chief complaints (e.g., fatigue, back pain, etc.) completed the computerized PRIME-MD in the waiting room and were randomly assigned to one of three groups: patient and physician told PRIME-MD results, patient told PRIME-MD results, and neither told PRIME-MD results. The main outcome measure was the percentage of patients with a PRIME-MD diagnosis who received a psychiatric consultation or referral from the ED. RESULTS: 183 (5% of all ED patients) were approached. 123 eligible patients consented to participate, completed the PRIME-MD and were randomized. 95 patients had outcomes recorded. 51 (54%) had a PRIME-MD diagnosis and 8 (16%) of them were given a psychiatric consultation or referral in the ED. While the frequency of consultation or referral increased as the intervention's intensity increased (tell neither = 11% (1/9), tell patient 15% (3/20), tell patient and physician 18% (4/22)), no group came close to the 50% threshold we sought. For this reason, we stopped the trial after an interim analysis. CONCLUSION: Patients willingly completed the PRIME-MD and 54% had a PRIME-MD diagnosis. Unfortunately, at our institution, informing the patient (and physician) of the PRIME-MD results infrequently led to the patient being directed toward care for their psychiatric condition

    Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study

    Get PDF
    BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens

    Revised estimates of influenza-associated excess mortality, United States, 1995 through 2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excess mortality due to seasonal influenza is thought to be substantial. However, influenza may often not be recognized as cause of death. Imputation methods are therefore required to assess the public health impact of influenza. The purpose of this study was to obtain estimates of monthly excess mortality due to influenza that are based on an epidemiologically meaningful model.</p> <p>Methods and Results</p> <p>U.S. monthly all-cause mortality, 1995 through 2005, was hierarchically modeled as Poisson variable with a mean that linearly depends both on seasonal covariates and on influenza-certified mortality. It also allowed for overdispersion to account for extra variation that is not captured by the Poisson error. The coefficient associated with influenza-certified mortality was interpreted as ratio of total influenza mortality to influenza-certified mortality. Separate models were fitted for four age categories (<18, 18–49, 50–64, 65+). Bayesian parameter estimation was performed using Markov Chain Monte Carlo methods. For the eleven year study period, a total of 260,814 (95% CI: 201,011–290,556) deaths was attributed to influenza, corresponding to an annual average of 23,710, or 0.91% of all deaths.</p> <p>Conclusion</p> <p>Annual estimates for influenza mortality were highly variable from year to year, but they were systematically lower than previously published estimates. The excellent fit of our model with the data suggest validity of our estimates.</p

    Association between LRP5 polymorphism and bone mineral density: a Bayesian meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The low-density lipoprotein receptor-related protein 5 gene (LRP5) was identified to be linked to the variation in BMD in high bone mass pedigrees. Subsequent population-based studies of the association between the LRP5 gene and BMD have yielded conflicting results. The present study was aimed at examining the association between LRP5 gene and BMD by using meta-analysis.</p> <p>Methods</p> <p>A systematic electronic search of literature was conducted to identify all published studies in English on the association between LRP5 gene and osteoporosis-related phenotypes, including bone mineral density and fracture. BMD data were summarized from individual studies by LRP5 genotype, and a synthesis of data was performed with random-effects meta-analyses. After excluding studies on animal and review papers, there were 19 studies for the synthesis. Among these studies, 10 studies used the rs3736228 (A1330V) polymorphism and reported BMD values.</p> <p>Results</p> <p>The 10 eligible studies comprised 16,705 individuals, with the majority being women (n = 8444), aged between 18 – 81 years. The overall distribution of genotype frequencies was: AA, 68%, AV and VV, 32%. However, the genotype frequency varied significantly within as well as between ethnic populations. On random-effects meta-analysis, lumbar spine BMD among individuals with the AA genotype was on average 0.018 (95% confidence interval [CI]: 0.012 to 0.023) g/cm<sup>2 </sup>higher than those with either AV or VV genotype. Similarly, femoral neck BMD among carriers of the AA genotype was 0.011 (95%CI: 0.004 to 0.017) g/cm<sup>2 </sup>higher than those without the genotype. While there was no significant heterogeneity in the association between the A1330V polymorphism and lumbar spine BMD (p = 0.55), the association was heterogeneous for femoral neck BMD (p = 0.05). The probability that the difference is greater than one standard deviation was 0.34 for femoral neck BMD and 0.54 for lumbar spine BMD.</p> <p>Conclusion</p> <p>These results suggest that there is a modest effect of the A1330V polymorphism on BMD in the general population, and that the modest association may limit its clinical use.</p

    The importance of baseline viral load when assessing relative efficacy in treatment-naïve HBeAg-positive chronic hepatitis B: a systematic review and network meta-analysis.

    Get PDF
    BACKGROUND: To date no network meta-analysis (NMA) has accounted for baseline variations in viral load when assessing the relative efficacy of interventions for chronic hepatitis B (CHB). We undertook baseline-adjusted and unadjusted analyses using the same data to explore the impact of baseline viral load (BVL) on CHB treatment response. METHODS: We searched Embase, Medline, Medline in Process and the Cochrane CENTRAL databases for randomised clinical trials (RCTs) of monotherapy interventions at licensed doses for use in CHB. Search strategies comprised CHB disease and drug terms (a combination of controlled vocabulary and free text terms) and also a bespoke RCT filter.The NMA was undertaken in WinBUGs using fixed and random effects methods, using data obtained from a systematic review. Individual patient data (IPD) from an entecavir clinical trial were used to quantify the impact of different baseline characteristics (in particular undetectable viral load (UVL) at 1 year) on relative treatment effect. Study level mean baseline values from all identified studies were used. Results were generated for UVL and presented as relative risks (RRs) and 95% credible intervals (CrIs) using entecavir as reference treatment. RESULTS: Overall, for all eight relevant interventions we identified 3,000 abstracts. Following full text review a total of 35 (including the contents of six clinical study reports) met the inclusion critera; 19 were in hepatitis B e antigen (HBeAg)-positive patients and 14 of the 19 contained outcome information of relevance to the NMA.Entecavir and tenofovir studies had heterogeneous patient populations in terms of BVL (mean values 9.29 and 8.65 log10 copies/ml respectively). After adjusting UVL for BVL using an informative prior based on the IPD analysis, the difference between entecavir and tenofovir was not statistically significant (RR 1.27, 95% CrI 0.96 to 1.47-fixed effects). A similar conclusion was found in all sensitivity analyses. Adjusted tenofovir results were more consistent with observed clinical trial response rates. CONCLUSIONS: This study demonstrates the importance of adjusting for BVL when assessing the relative efficacy of CHB interventions in achieving UVL. This has implications for both clinical and economic decision making

    A qualitative study of cardiovascular disease risk communication in NHS Health Check using different risk calculators: protocol for the RIsk COmmunication in NHS Health Check (RICO) study. BMC family practice, 20(1), 11.

    Get PDF
    Background NHS Health Check is a national cardiovascular disease (CVD) risk assessment programme for 40–74 year olds in England, in which practitioners should assess and communicate CVD risk, supported by appropriate risk-management advice and goal-setting. This requires effective communication, to equip patients with knowledge and intention to act. Currently, the QRISK®2 10-year CVD risk score is most common way in which CVD risk is estimated. Newer tools, such as JBS3, allow manipulation of risk factors and can demonstrate the impact of positive actions. However, the use, and relative value, of these tools within CVD risk communication is unknown. We will explore practitioner and patient CVD risk perceptions when using QRISK®2 or JBS3, the associated advice or treatment offered by the practitioner, and patients’ responses. Methods RIsk COmmunication in NHS Health Check (RICO) is a qualitative study with quantitative process evaluation. Twelve general practices in the West Midlands of England will be randomised to one of two groups: usual practice, in which practitioners use QRISK®2 to assess and communicate CVD risk; intervention, in which practitioners use JBS3. Twenty Health Checks per practice will be video-recorded (n = 240, 120 per group), with patients stratified by age, gender and ethnicity. Post-Health Check, video-stimulated recall (VSR) interviews will be conducted with 48 patients (n = 24 per group) and all practitioners (n = 12–18), using video excerpts to enhance participant recall/reflection. Patient medical record reviews will detect health-protective actions in the first 12-weeks following a Health Check (e.g., lifestyle referrals, statin prescription). Risk communication, patient response and intentions for health-protective behaviours in each group will be explored through thematic analysis of video-recorded Health Checks (using Protection Motivation Theory as a framework) and VSR interviews. Process evaluation will include between-group comparisons of quantitatively coded Health Check content and post-Health Check patient outcomes. Finally, 10 patients with the most positive intentions or behaviours will be selected for case study analysis (using all data sources). Discussion This study will produce novel insights about the utility of QRISK®2 and JBS3 to promote patient and practitioner understanding and perception of CVD risk and associated implications for patient intentions with respect to health-protective behaviours (and underlying mechanisms). Recommendations for practice will be developed

    Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus.

    Get PDF
    The pacific islands of Micronesia have experienced several outbreaks of mosquito-borne diseases over the past decade. In outbreaks on small islands, the susceptible population is usually well defined, and there is no co-circulation of pathogens. Because of this, analysing such outbreaks can be useful for understanding the transmission dynamics of the pathogens involved, and particularly so for yet understudied pathogens such as Zika virus. Here, we compared three outbreaks of dengue and Zika virus in two different island settings in Micronesia, the Yap Main Islands and Fais, using a mathematical model of transmission dynamics and making full use of commonalities in disease and setting between the outbreaks. We found that the estimated reproduction numbers for Zika and dengue were similar when considered in the same setting, but that, conversely, reproduction number for the same disease can vary considerably by setting. On the Yap Main Islands, we estimated a reproduction number of 8.0-16 (95% Credible Interval (CI)) for the dengue outbreak and 4.8-14 (95% CI) for the Zika outbreak, whereas for the dengue outbreak on Fais our estimate was 28-102 (95% CI). We further found that the proportion of cases of Zika reported was smaller (95% CI 1.4%-1.9%) than that of dengue (95% CI: 47%-61%). We confirmed these results in extensive sensitivity analysis. They suggest that models for dengue transmission can be useful for estimating the predicted dynamics of Zika transmission, but care must be taken when extrapolating findings from one setting to another
    • …
    corecore