148 research outputs found

    ParameciumDB: a community resource that integrates the Paramecium tetraurelia genome sequence with genetic data

    Get PDF
    ParameciumDB () is a new model organism database associated with the genome sequencing project of the unicellular eukaryote Paramecium tetraurelia. Built with the core components of the Generic Model Organism Database (GMOD) project, ParameciumDB currently contains the genome sequence and annotations, linked to available genetic data including the Gif Paramecium stock collection. It is thus possible to navigate between sequences and stocks via the genes and alleles. Phenotypes, of mutant strains and of knockdowns obtained by RNA interference, are captured using controlled vocabularies according to the Entity-Attribute-Value model. ParameciumDB currently supports browsing of phenotypes, alleles and stocks as well as querying of sequence features (genes, UniProt matches, InterPro domains, Gene Ontology terms) and of genetic data (phenotypes, stocks, RNA interference experiments). Forms allow submission of RNA interference data and some bioinformatics services are available. Future ParameciumDB development plans include coordination of human curation of the near 40 000 gene models by members of the research community

    A meiosis-specific Spt5 homolog involved in non-coding transcription

    Get PDF
    Spt5 is a conserved and essential transcriptional regulator that binds directly to RNA polymerase and is involved in transcription elongation, polymerase pausing and various co-transcriptional processes. To investigate the role of Spt5 in non-coding transcription, we used the unicellular model Paramecium tetraurelia. In this ciliate, development is controlled by epigenetic mechanisms that use different classes of non-coding RNAs to target DNA elimination. We identified two SPT5 genes. One (STP5v) is involved in vegetative growth, while the other (SPT5m) is essential for sexual reproduction. We focused our study on SPT5m, expressed at meiosis and associated with germline nuclei during sexual processes. Upon Spt5m depletion, we observed absence of scnRNAs, piRNA-like 25 nt small RNAs produced at meiosis. The scnRNAs are a temporal copy of the germline genome and play a key role in programming DNA elimination. Moreover, Spt5m depletion abolishes elimination of all germline-limited sequences, including sequences whose excision was previously shown to be scnRNA-independent. This suggests that in addition to scnRNA production, Spt5 is involved in setting some as yet uncharacterized epigenetic information at meiosis. Our study establishes that Spt5m is crucial for developmental genome rearrangements and necessary for scnRNA production

    Elucidation of Clathrin-Mediated Endocytosis in Tetrahymena Reveals an Evolutionarily Convergent Recruitment of Dynamin

    Get PDF
    Ciliates, although single-celled organisms, contain numerous subcellular structures and pathways usually associated with metazoans. How this cell biological complexity relates to the evolution of molecular elements is unclear, because features in these cells have been defined mainly at the morphological level. Among these ciliate features are structures resembling clathrin-coated, endocytic pits associated with plasma membrane invaginations called parasomal sacs. The combination of genome-wide sequencing in Tetrahymena thermophila with tools for gene expression and replacement has allowed us to examine this pathway in detail. Here we demonstrate that parasomal sacs are sites of clathrin-dependent endocytosis and that AP-2 localizes to these sites. Unexpectedly, endocytosis in Tetrahymena also involves a protein in the dynamin family, Drp1p (Dynamin-related protein 1). While phylogenetic analysis of AP subunits indicates a primitive origin for clathrin-mediated endocytosis, similar analysis of dynamin-related proteins suggests, strikingly, that the recruitment of dynamin-family proteins to the endocytic pathway occurred independently during the course of the ciliate and metazoan radiations. Consistent with this, our functional analysis suggests that the precise roles of dynamins in endocytosis, as well as the mechanisms of targeting, differ in metazoans and ciliates

    Genome-wide analysis of genetic and epigenetic control of programmed DNA deletion

    Get PDF
    During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic contro

    Local Effect of Enhancer of Zeste-Like Reveals Cooperation of Epigenetic and cis-Acting Determinants for Zygotic Genome Rearrangements

    Get PDF
    International audienceIn the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3 (H3K27me3 and H3K9me3) displays a dynamic nuclear localization that is altered when the endonuclease required for DNA elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3 establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1-a putative histone methyltransferase and Dcl5-a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3 ensure specific demarcation of very short germline sequences from the adjacent somatic sequences

    GMODWeb: a web framework for the generic model organism database

    Get PDF
    ABSTRACT: The Generic Model Organism Database (GMOD) initiative provides species-agnostic data models and software tools for representing curated model organism data. Here we describe GMODWeb, a GMOD project designed to speed the development of Model Organism Database (MOD) websites. Sites created with GMODWeb provide integration with other GMOD tools and allow users to browse and search through a variety of data types. GMODWeb was built using the open source Turnkey web framework and is available from http://turnkey.sourceforge.net

    Secuelas por Accidente Cerebrovascular Isquémico en pacientes de 40-90 años, del servicio de Medicina Interna, Hospital Roberto Calderón Gutiérrez, de enero 2011 a diciembre 2014

    Get PDF
    Las secuelas neurológicas después del accidente cerebrovascular isquémico pueden impactar negativamente en la calidad de vida de las personas y ser factor determinante en la mortalidad de estas, existiendo datos limitados y variables en cuanto a la frecuencia de su desarrollo, siendo preponderante la investigación de este tópico. El presente estudio es de tipo descriptivo, retrospectivo y de corte transversal, en el cual se abordaron las Secuelas por Accidente Cerebrovascular Isquémico en pacientes de 40 – 90 años, del servicio de Medicina Interna, del Hospital Roberto Calderón Gutiérrez, de enero 2011 a diciembre 2014, que persigue describir las secuelas por esta patología en el grupo de estudio definido. El universo se conformó por 138 expedientes de pacientes con la patología, siendo la muestra de 103 expedientes, la fuente fue secundaria, conformada por la revisión de expedientes clínico, recopilando los datos por medio de la Ficha de recolección elaborada en base a los objetivos propuestos en el estudio. Los principales resultados reflejaron que el sexo predominante fue el femenino, entre el grupo etario de 71 a 80 años. La Hipertensión Arterial representó el antecedente patológico más frecuente, siendo la arteria cerebral media la más afectada. La parálisis / paresia de las extremidades contralaterales fue la secuela predominante. Por tanto, se recomienda hacer insistencia en la atención integral en salud brindada a los usuarios, logrando reconocer factores de riesgo patológico y no patológico incidiendo así en su control o eliminación y de esta forma mitigando el desarrollo de esta enfermedad. Palabras Claves: Secuelas, accidente cerebrovascular, isquemia

    The Polycomb protein Ezl1 mediates H3K9 and H3K27 methylation to repress transposable elements in Paramecium.

    Get PDF
    In animals and plants, the H3K9me3 and H3K27me3 chromatin silencing marks are deposited by different protein machineries. H3K9me3 is catalyzed by the SET-domain SU(VAR)3-9 enzymes, while H3K27me3 is catalyzed by the SET-domain Enhancer-of-zeste enzymes, which are the catalytic subunits of Polycomb Repressive Complex 2 (PRC2). Here, we show that the Enhancer-of-zeste-like protein Ezl1 from the unicellular eukaryote Paramecium tetraurelia, which exhibits significant sequence and structural similarities with human EZH2, catalyzes methylation of histone H3 in vitro and in vivo with an apparent specificity toward K9 and K27. We find that H3K9me3 and H3K27me3 co-occur at multiple families of transposable elements in an Ezl1-dependent manner. We demonstrate that loss of these histone marks results in global transcriptional hyperactivation of transposable elements with modest effects on protein-coding gene expression. Our study suggests that although often considered functionally distinct, H3K9me3 and H3K27me3 may share a common evolutionary history as well as a common ancestral role in silencing transposable elements

    CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology

    Get PDF
    In our functional dissection of the CD33 Alzheimer’s disease susceptibility locus, we find that the rs3865444C risk allele is associated with greater cell surface expression of CD33 in monocytes (t50 = 10.06, pjoint=1.3×10–13) of young and older individuals. It is also associated with (1) diminished internalization of Aβ42) (2) accumulation of neuritic amyloid pathology and fibrillar amyloid on in vivo imaging and (3), increased numbers of activated human microglia
    corecore