2,561 research outputs found

    Versatile Dye Laser Generator-Amplifier System for Intense Tunable Picosecond Pulse Generation

    Get PDF
    Abstract. Passively mode-locked ruby-laser pulses are used to generate nearly diffraction-limited picosecond light pulses in a dye cell by longitudinally amplified spontaneous emission. The output pulses are amplified in three longitudinally pumped dye cells, then spectrally filtered with a grating spectrometer and finally reamplified in a fourth dye amplifier in order to generate intense frequency tunable picosecond light pulses. PACS: 42.55M, 42.60 Various pulsed dye laser systems are available for tunable picosecond pulse generation [1, 2]. Flash-lamp pumped mode-locked dye lasers [3], synchron-ously pumped lasers [4], short-cavity resonators [5], quenched transient lasers [6], distributed feedback lasers [7], and amplified spontaneous emission sys-tems [8] have been investigated. The arrangements applying amplified spontaneous emission (ASE) may be grouped into longitudinall

    barx1 is necessary for ectomesenchyme proliferation and osteochondroprogenitor condensation in the zebrafish pharyngeal arches

    Get PDF
    AbstractBarx1 modulates cellular adhesion molecule expression and participates in specification of tooth-types, but little is understood of its role in patterning the pharyngeal arches. We examined barx1 expression during zebrafish craniofacial development and performed a functional analysis using antisense morpholino oligonucleotides. Barx1 is expressed in the rhombencephalic neural crest, the pharyngeal arches, the pectoral fin buds and the gut in contrast to its paralogue barx2, which is most prominently expressed in the arch epithelium. Additionally, barx1 transient expression was observed in the posterior lateral line ganglia and developing trunk/tail. We show that Barx1 is necessary for proliferation of the arch osteochondrogenic progenitors, and that morphants exhibit diminished and dysmorphic arch cartilage elements due to reductions in chondrocyte differentiation and condensation. Attenuation of Barx1 results in lost arch expression of osteochondrogenic markers col2a1, runx2a and chondromodulin, as well as odontogenic marker dlx2b. Further, loss of barx1 positively influenced gdf5 and chordin, markers of jaw joint patterning. FGF signaling is required for maintaining barx1 expression, and that ectopic BMP4 induces expression of barx1 in the intermediate region of the second pharyngeal arch. Together, these results indicate an essential role for barx1 at early stages of chondrogenesis within the developing zebrafish viscerocranium

    Stroke lesion size:Still a useful biomarker for stroke severity and outcome in times of high-dimensional models

    Get PDF
    BACKGROUND The volumetric size of a brain lesion is a frequently used stroke biomarker. It stands out among most imaging biomarkers for being a one-dimensional variable that is applicable in simple statistical models. In times of machine learning algorithms, the question arises of whether such a simple variable is still useful, or whether high-dimensional models on spatial lesion information are superior. METHODS We included 753 first-ever anterior circulation ischemic stroke patients (age 68.4±15.2 years; NIHSS at 24 h 4.4±5.1; modified Rankin Scale (mRS) at 3-months median[IQR] 1[0.75;3]) and traced lesions on diffusion-weighted MRI. In an out-of-sample model validation scheme, we predicted stroke severity as measured by NIHSS 24 h and functional stroke outcome as measured by mRS at 3 months either from spatial lesion features or lesion size. RESULTS For stroke severity, the best regression model based on lesion size performed significantly above chance (p < 0.0001) with R2 = 0.322, but models with spatial lesion features performed significantly better with R2 = 0.363 (t(752) = 2.889; p = 0.004). For stroke outcome, the best classification model based on lesion size again performed significantly above chance (p < 0.0001) with an accuracy of 62.8%, which was not different from the best model with spatial lesion features (62.6%, p = 0.80). With smaller training data sets of only 150 or 50 patients, the performance of high-dimensional models with spatial lesion features decreased up to the point of being equivalent or even inferior to models trained on lesion size. The combination of lesion size and spatial lesion features in one model did not improve predictions. CONCLUSIONS Lesion size is a decent biomarker for stroke outcome and severity that is slightly inferior to spatial lesion features but is particularly suited in studies with small samples. When low-dimensional models are desired, lesion size provides a viable proxy biomarker for spatial lesion features, whereas high-precision prediction models in personalised prognostic medicine should operate with high-dimensional spatial imaging features in large samples

    Asian Summer Monsoon Diagnostics for CAM5.1

    Get PDF

    Application of MJO Simulation Diagnostics to Climate Models

    Get PDF
    The ability of eight climate models to simulate the Madden-Julian oscillation (MJO) is examined using diagnostics developed by the U.S. Climate Variability and Predictability (CLIVAR) MJO Working Group. Although the MJO signal has been extracted throughout the annual cycle, this study focuses on the boreal winter (November-April) behavior. Initially, maps of the mean state and variance and equatorial space-time spectra of 850-hPa zonal wind and precipitation are compared with observations. Models best represent the intraseasonal space-time spectral peak in the zonal wind compared to that of precipitation. Using the phase-space representation of the multivariate principal components (PCs), the life cycle properties of the simulated MJOs are extracted, including the ability to represent how the MJO evolves from a given subphase and the associated decay time scales. On average, the MJO decay (e-folding) time scale for all models is shorter (~20- 29 days) than observations (~31 days). All models are able to produce a leading pair of multivariate principal components that represents eastward propagation of intraseasonal wind and precipitation anomalies, although the fraction of the variance is smaller than observed for all models. In some cases, the dominant time scale of these PCs is outside of the 30-80-day band. Several key variables associated with the model's MJO are investigated, including the surface latent heat flux, boundary layer (925 hPa) moisture convergence, and the vertical structure of moisture. Low-level moisture convergence ahead (east) of convection is associated with eastward propagation in most of the models. A few models are also able to simulate the gradual moistening of the lower troposphere that precedes observed MJO convection, as well as the observed geographical difference in the vertical structure of moisture associated with the MJO. The dependence of rainfall on lower tropospheric relative humidity and the fraction of rainfall that is stratiform are also discussed, including implications these diagnostics have for MJO simulation. Based on having the most realistic intraseasonal multivariate empirical orthogonal functions, principal component power spectra, equatorial eastward propagating outgoing longwave radiation (OLR), latent heat flux, low-level moisture convergence signals, and vertical structure of moisture over the Eastern Hemisphere, the superparameterized Community Atmosphere Model (SPCAM) and the ECHAM4/Ocean Isopycnal Model (OPYC) show the best skill at representing the MJO.open1149
    • 

    corecore