2,439 research outputs found
First trimester diagnosis and screening for fetal aneuploidy
Maternal serum screening for neural tube defects and fetal aneuploidy in the second trimester has been incorporated into obstetrical practice over the past two decades. Now, as a result of several multicenter trials, first trimester screening between 11 and 14 weeks has been shown to be an effective and reliable screening test for Down syndrome and trisomy 18. Benefits of first trimester screening include earlier identification of the pregnancy at risk for fetal aneuploidy and anatomic defects, in particular, cardiac anomalies, and the option of earlier diagnosis by chorionic villus sampling, if available. This policy updates the American College of Medical Genetics policy statement entitled Second Trimester Maternal Serum Screening for Fetal Open Neural Tube Defects and Aneuploidy (2004) and complements the sections of American College of Medical Geneticâs Standards and Guidelines for Clinical Genetics Laboratories entitled âPrenatal screening for Down syndrome that includes first trimester biochemistry and/or ultrasound measurements.
Lunar surface mechanical properties
The surface material at the Surveyor 5 site is granular and slightly cohesive. Spacecraft footpads plowed trenches in this material as the spacecraft slid during landing. For a compressible soil model, a static bearing capacity of 2.7 newtons/cm^2 gave best agreement with the observations. Static firing of the vernier engines against the surface moved surface particles; a crater 20 cm in diameter and about 1 cm deep was produced, apparently at engine shutdown. The permeability of the soil to gases, to a depth of about 25 cm, is 1 Ă 10^(â8) cm^2, corresponding to soil particles mostly 2 to 60 ÎŒ in diameter
Searching for Exoplanets Using a Microresonator Astrocomb
Detection of weak radial velocity shifts of host stars induced by orbiting
planets is an important technique for discovering and characterizing planets
beyond our solar system. Optical frequency combs enable calibration of stellar
radial velocity shifts at levels required for detection of Earth analogs. A new
chip-based device, the Kerr soliton microcomb, has properties ideal for
ubiquitous application outside the lab and even in future space-borne
instruments. Moreover, microcomb spectra are ideally suited for astronomical
spectrograph calibration and eliminate filtering steps required by conventional
mode-locked-laser frequency combs. Here, for the calibration of astronomical
spectrographs, we demonstrate an atomic/molecular line-referenced,
near-infrared soliton microcomb. Efforts to search for the known exoplanet HD
187123b were conducted at the Keck-II telescope as a first in-the-field
demonstration of microcombs
Corpora amylacea are associated with tau burden and cognitive status in Alzheimer\u27s disease
Corpora amylacea (CA) and their murine analogs, periodic acid Schiff (PAS) granules, are age-related, carbohydrate-rich structures that serve as waste repositories for aggregated proteins, damaged cellular organelles, and other cellular debris. The structure, morphology, and suspected functions of CA in the brain imply disease relevance. Despite this, the link between CA and age-related neurodegenerative diseases, particularly Alzheimer\u27s disease (AD), remains poorly defined. We performed a neuropathological analysis of mouse PAS granules and human CA and correlated these findings with AD progression. Increased PAS granule density was observed in symptomatic tau transgenic mice and APOE knock-in mice. Using a cohort of postmortem AD brain samples, we examined CA in cognitively normal and dementia patients across Braak stages with varying APOE status. We identified a Braak-stage dependent bimodal distribution of CA in the dentate gyrus, with CA accumulating and peaking by Braak stages II-III, then steadily declining with increasing tau burden. Refined analysis revealed an association of CA levels with both cognition and APOE status. Finally, tau was detected in whole CA present in human patient cerebrospinal fluid, highlighting CA-tau as a plausible prodromal AD biomarker. Our study connects hallmarks of the aging brain with the emergence of AD pathology and suggests that CA may act as a compensatory factor that becomes depleted with advancing tau burden
The Elusive Rentier Rich: Piketty's Data Battles and the Power of Absent Evidence
The popularity of Thomas Piketty?s research on wealth inequality has drawn attention to a curious question: why was widening wealth inequality largely neglected by mainstream economists in recent decades? To explore and explain that neglect, I draw on the writing of the early neoclassical economist John Bates Clark, who introduced the notion of the marginal productivity of income distribution at the end of the nineteenth century. I then turn to Piketty?s Capital in order to analyze the salience of marginal productivity theories of income today. I suggest that most of the criticism and praise for Piketty?s research is focused on data that are accessible and measurable, obscuring attention to questions over whether current methods for measuring economic capital are defensible or not. My overarching aim is to explore how ?absent? data in economics as a whole help to reinforce blind spots within mainstream economic theory
An Integrated-Photonics Optical-Frequency Synthesizer
Integrated-photonics microchips now enable a range of advanced
functionalities for high-coherence applications such as data transmission,
highly optimized physical sensors, and harnessing quantum states, but with
cost, efficiency, and portability much beyond tabletop experiments. Through
high-volume semiconductor processing built around advanced materials there
exists an opportunity for integrated devices to impact applications cutting
across disciplines of basic science and technology. Here we show how to
synthesize the absolute frequency of a lightwave signal, using integrated
photonics to implement lasers, system interconnects, and nonlinear frequency
comb generation. The laser frequency output of our synthesizer is programmed by
a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and
traceability to the SI second. This is accomplished with a heterogeneously
integrated III/V-Si tunable laser, which is guided by dual
dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through
out-of-loop measurements of the phase-coherent, microwave-to-optical link, we
verify that the fractional-frequency instability of the integrated photonics
synthesizer matches the reference-clock instability for a 1
second acquisition, and constrain any synthesis error to while
stepping the synthesizer across the telecommunication C band. Any application
of an optical frequency source would be enabled by the precision optical
synthesis presented here. Building on the ubiquitous capability in the
microwave domain, our results demonstrate a first path to synthesis with
integrated photonics, leveraging low-cost, low-power, and compact features that
will be critical for its widespread use.Comment: 10 pages, 6 figure
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
We present all-sky modelling of the high resolution Planck, IRAS, and WISE
infrared (IR) observations using the physical dust model presented by Draine
and Li in 2007 (DL). We study the performance and results of this model, and
discuss implications for future dust modelling. The present work extends the DL
dust modelling carried out on nearby galaxies using Herschel and Spitzer data
to Galactic dust emission. We employ the DL dust model to generate maps of the
dust mass surface density, the optical extinction Av, and the starlight
intensity parametrized by Umin. The DL model reproduces the observed spectral
energy distribution (SED) satisfactorily over most of the sky, with small
deviations in the inner Galactic disk and in low ecliptic latitude areas. We
compare the DL optical extinction Av for the diffuse interstellar medium with
optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan
digital sky survey. The DL Av estimates are larger than those determined
towards QSOs by a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength where the SED peaks,
appears to trace variations in the far-IR opacity of the dust grains per unit
Av, and not only in the starlight intensity. To circumvent the model
deficiency, we propose an empirical renormalization of the DL Av estimate,
dependent of Umin, which compensates for the systematic differences found with
QSO observations. This renormalization also brings into agreement the DL Av
estimates with those derived for molecular clouds from the near-IR colours of
stars in the 2 micron all sky survey. The DL model and the QSOs data are used
to compress the spectral information in the Planck and IRAS observations for
the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by
Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
Correlation of X-ray diffraction signatures of breast tissue and their histopathological classification
This pilot study examines the correlation of X-ray diffraction (XRD) measurements with the histopathological analysis of breast tissue. Eight breast cancer samples were investigated. Each sample contained a mixture of normal and cancerous tissues. In total, 522 separate XRD measurements were made at different locations across the samples (8 in total). The resulting XRD spectra were subjected to principal component analysis (PCA) in order to determine if there were any distinguishing features that could be used to identify different tissue components. 99.0% of the variation between the spectra were described by the first two principal components (PC). Comparing the location of points in PC space with the classification determined by histopathology indicated correlation between the shape/magnitude of the XRD spectra and the tissue type. These results are encouraging and suggest that XRD could be used for the intraoperative or postoperative classification of bulk tissue samples
- âŠ