160 research outputs found
Recommended from our members
Seasonal cycles and variability of O3 and H2O in the UT/LMS during SPURT
Airborne high resolution in situ measurements of a large set of trace gases including ozone (O3) and total water (H2O) in the upper troposphere and the lowermost stratosphere (UT/LMS) have been performed above Europe within the SPURT project. SPURT provides an extensive data coverage of the UT/LMS in each season within the time period between November 2001 and July 2003.
In the LMS a distinct spring maximum and autumn minimum is observed in O3, whereas its annual cycle in the UT is shifted by 2–3 months later towards the end of the year. The more variable H2O measurements reveal a maximum during summer and a minimum during autumn/winter with no phase shift between the two atmospheric compartments.
For a comprehensive insight into trace gas composition and variability in the UT/LMS several statistical methods are applied using chemical, thermal and dynamical vertical coordinates. In particular, 2-dimensional probability distribution functions serve as a tool to transform localised aircraft data to a more comprehensive view of the probed atmospheric region. It appears that both trace gases, O3 and H2O, reveal the most compact arrangement and are best correlated in the view of potential vorticity (PV) and distance to the local tropopause, indicating an advanced mixing state on these surfaces. Thus, strong gradients of PV seem to act as a transport barrier both in the vertical and the horizontal direction. The alignment of trace gas isopleths reflects the existence of a year-round extra-tropical tropopause transition layer. The SPURT measurements reveal that this layer is mainly affected by stratospheric air during winter/spring and by tropospheric air during autumn/summer.
Normalised mixing entropy values for O3 and H2O in the LMS appear to be maximal during spring and summer, respectively, indicating highest variability of these trace gases during the respective seasons
Trees over Infinite Structures and Path Logics with Synchronization
We provide decidability and undecidability results on the model-checking
problem for infinite tree structures. These tree structures are built from
sequences of elements of infinite relational structures. More precisely, we
deal with the tree iteration of a relational structure M in the sense of
Shelah-Stupp. In contrast to classical results where model-checking is shown
decidable for MSO-logic, we show decidability of the tree model-checking
problem for logics that allow only path quantifiers and chain quantifiers
(where chains are subsets of paths), as they appear in branching time logics;
however, at the same time the tree is enriched by the equal-level relation
(which holds between vertices u, v if they are on the same tree level). We
separate cleanly the tree logic from the logic used for expressing properties
of the underlying structure M. We illustrate the scope of the decidability
results by showing that two slight extensions of the framework lead to
undecidability. In particular, this applies to the (stronger) tree iteration in
the sense of Muchnik-Walukiewicz.Comment: In Proceedings INFINITY 2011, arXiv:1111.267
Recommended from our members
Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system
Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52�N) to Faro, Portugal (37�N) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the streamer features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM are seen only up to about tropopause height at 340 hPa and 270 hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models
Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012
Global simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) using artificial tracers of air mass origin are used to analyze transport mechanisms from the Asian monsoon region into the lower stratosphere. In a case study, the transport of air masses from the Asian monsoon anticyclone originating in India/China by an eastward-migrating anticyclone which broke off from the main anticyclone on 20 September 2012 and filaments separated at the northeastern flank of the anticyclone are analyzed. Enhanced contributions of young air masses (younger than 5 months) are found within the separated anticyclone confined at the top by the thermal tropopause. Further, these air masses are confined by the anticyclonic circulation and, on the polar side, by the subtropical jet such that the vertical structure resembles a bubble within the upper troposphere. Subsequently, these air masses are transported eastwards along the subtropical jet and enter the lower stratosphere by quasi-horizontal transport in a region of double tropopauses most likely associated with Rossby wave breaking events. As a result, thin filaments with enhanced signatures of tropospheric trace gases were measured in the lower stratosphere over Europe during the TACTS/ESMVal campaign in September 2012 in very good agreement with CLaMS simulations. Our simulations demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere. Young, moist air masses, in particular at the end of the monsoon season in September/October 2012, flooded the extratropical lower stratosphere in the Northern Hemisphere with contributions of up to ≈30% at 380K (with the remaining fraction being aged air). In contrast, the contribution of young air masses to the Southern Hemisphere is much lower. At the end of October 2012, approximately 1.5 ppmv HO is found in the lower Northern Hemisphere stratosphere (at 380 K) from source regions both in Asia and in the tropical Pacific compared to a mean water vapor content of ≈5 ppmv. In addition to this main transport pathway from the Asian monsoon anticyclone to the east along the subtropical jet and subsequent transport into the northern lower stratosphere, a second horizontal transport pathway out of the anticyclone to the west into the tropics (TTL) is found in agreement with MIPAS HCFC-22 measurements
How Can Doctors Help Their Patients to Return to Work?
Getting back to work is important for most patients but doctors are often unsure how best to help. The article reviews evidence for the effectiveness of the interventions now available
A Guided Workbook Intervention (WorkPlan) to Support Work-Related Goals Among Cancer Survivors: Protocol of a Feasibility Randomized Controlled Trial
Background: Returning to and staying at work following illness is associated with better physical and psychological functioning. Not working has been shown to be associated with reduced self-esteem, lowered self-efficacy, and decreased belief in one's ability to return to the workplace. Although there is a growing body of research looking at what predicts return to work following cancer treatment, there are fewer studies examining interventions targeting return to work. Objective: The primary objective is to assess the feasibility and acceptability of a theoretically led workbook intervention designed to support cancer patients in returning to work to inform a fully powered randomized controlled trial (RCT). Methods: This is a multicenter feasibility RCT where the main analysis uses a qualitative approach. Sixty participants (aged 18-65 years) who have received a diagnosis of cancer and who intend to return to work will be randomized to either the WorkPlan intervention group or a usual care group (ratio 1:1). Participants in the intervention group will receive a guided workbook intervention (which contains activities aimed at eliciting thoughts and beliefs, identifying targets and actions, and concrete steps to achieve goals) and will receive telephone support over a 4-week period. The primary outcome measure is time taken to return to work (in days), and secondary outcome measures include mood, quality of life, illness perceptions, and job satisfaction. Data will be collected through postal questionnaires administered immediately postintervention and at 6- and 12-month follow-ups. In addition, interviews will be undertaken immediately postintervention (to explore acceptability of the intervention and materials) and at 12-month follow-up (to explore perceptions of participation in the trial and experiences of returning to work). Results: Enrollment for the study will be completed in May 2016. Data analysis will commence in April 2017, and the first results are expected to be submitted for publication in late 2017. Conclusions: Currently no standardized return-to-work intervention based on targeting cancer patient beliefs is in existence. If the intervention is shown to be feasible and acceptable, the results of this study will inform a future full RCT with the potential to provide a valuable and cost-efficient tool in supporting cancer survivors in the return-to-work process
Employment status and work-related difficulties in stomach cancer survivors compared with the general population
Little was known about work situation and work-related difficulties, including housework after stomach cancer diagnosis. We aimed to compare employment status and work-related difficulties between stomach cancer survivors and the general population. We enrolled 408 stomach cancer survivors from two hospitals 28 months after diagnosis and 994 representative volunteers from the general population from 15 geographic districts. Working was defined as being employed (including self-employed) and nonworking as being retired or a homemaker. Nonworking was significantly higher among stomach cancer survivors (46.6%) than in the general population (36.5%). Compared with the general population, the survivors had more fatigue in performing both housework (adjusted odds ratio (aOR)=2.08; 95% confidence interval (95% CI)=1.01–4.29) and gainful work (aOR=4.02; 2.55–6.33). More cancer survivors had reduced working hours (aOR=1.42; 95% CI=4.60–28.35) and reduced work-related ability (aOR=6.11; 95% CI=3.64–10.27) than did the general population. The association of nonworking with older age and being female was significantly more positive for survivors than for the general population. Among survivors, poorer Eastern Cooperation Oncology Group Performance Status and receiving total gastrectomy were positively associated with nonworking. Stomach cancer survivors experienced more difficulties in both housework and gainful employment than did the general population. Our findings on stomach cancer survivors' work-related difficulties and the predictors of nonworking will help physicians guide patients towards more realistic postsurgical employment plans
- …