198 research outputs found

    Domain modeling and grid generation for multi-block structured grids with application to aerodynamic and hydrodynamic configurations

    Get PDF
    About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation

    Desynchronization during anticipatory attention for an upcoming stimulus: A comparative EEG/MEG study

    Get PDF
    Objectives: Our neurophysiological model of anticipatory behaviour (e.g. Acta Psychol 101 (1999) 213; Bastiaansen et al., 1999a) predicts an activation of (primary) sensory cortex during anticipatory attention for an upcoming stimulus. In this paper we attempt to demonstrate this by means of event-related desynchronization (ERD). Methods: Five subjects performed a time estimation task, and were informed about the quality of their time estimation by either visual or auditory stimuli providing Knowledge of Results (KR). EEG and MEG were recorded in separate sessions, and ERD was computed in the 8± 10 and 10±12 Hz frequency bands for both datasets. Results: Both in the EEG and the MEG we found an occipitally maximal ERD preceding the visual KR for all subjects. Preceding the auditory KR, no ERD was present in the EEG, whereas in the MEG we found an ERD over the temporal cortex in two of the 5 subjects. These subjects were also found to have higher levels of absolute power over temporal recording sites in the MEG than the other subjects, which we consider to be an indication of the presence of a `tau' rhythm (e.g. Neurosci Lett 222 (1997) 111). Conclusions: It is concluded that the results are in line with the predictions of our neurophysiological model

    Elliptic surface grid generation on minimal and parmetrized surfaces

    Get PDF
    An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented

    Enhancement of aircraft cabin comfort studies by coupling of models for human thermoregulation, internal radiation, and turbulent flows

    Get PDF
    Scientific enhancement of the analysis of thermal comfort aspects in aircraft cabins is the subject of the current investigation. For this purpose, three important processes are identified that play a significant role in thermal comfort, viz. the human response to its thermal environment which is also known as thermoregulation, the actual movement of air and heat inside aircraft cabins due to natural and forced convection, and heat transfer due to radiation. Three existing models have been adopted to describe these phenomena. In the current investigation, the behaviour of these three models is investigated in terms of modelling aspects and computational efficiency. Furthermore, a robust coupling of the models in a single simulation environment is described. Simulation results are shown for academic and real-life applications. It is concluded that a useful simulation environment has been obtained for studying aspects of the individual seat climate. Also, open issues in physical and computational aspects of the models are identified which can be addressed in future studies

    Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    Get PDF
    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β and -γ, lung (i.e. pulmonary) cells and Natural Killer cells. We use recent results from experimentally infected chickens to validate some of the model predictions. The model includes an initial exponential increase of the viral load, which we show to be consistent with experimental data. Using this exponential growth model we show that the duration until a given viral load is reached in experiments with different inoculation doses is consistent with a model assuming a linear relationship between initial viral load and inoculation dose. Subsequent to the exponential-growth phase, the model results show a decline in viral load caused by both target-cell limitation as well as the innate immune response. The model results suggest that the temporal viral load pattern in the lungs displayed in experimental data cannot be explained by target-cell limitation alone. For biologically plausible parameter values the model is able to qualitatively match to data on viral load in chicken lungs up until approximately 4 days post infection. Comparison of model predictions with data on CD107-mediated degranulation of Natural Killer cells yields some discrepancy also for earlier days post infection

    Intrinsic gain modulation and adaptive neural coding

    Get PDF
    In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate vs current (f-I) curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio

    Minimizing the threat of pandemic emergence from avian influenza in poultry systems

    Get PDF
    BACKGROUND: Live-animal markets are a culturally important feature of meat distribution chains in many populations, yet they provide an opportunity for the maintenance and transmission of potentially emergent zoonotic pathogens. The ongoing human outbreak of avian H7N9 in China highlights the need for increased surveillance and control in these live-bird markets (LBMs). DISCUSSION: Closure of retail markets in affected areas rapidly decreased human cases to rare, sporadic occurrence, but little attention has been paid thus far to the role of upstream elements of the poultry distribution chain such as wholesale markets. This could partly explain why transmission in poultry populations has not been eliminated more broadly. We present surveillance data from both wholesale live-bird markets (wLBMs) and rLBMs in Shantou, China (from 2004–2006), and call on disease-dynamic theory to illustrate why closing rLBMs has only minor effects on the overall volume of transmission. We show that the length of time birds stay in rLBMs can severely limit transmission there, but that the system-wide effect may be reduced substantially by high levels of transmission upstream of retail markets. SUMMARY: Management plans that minimize transmission throughout the entire poultry supply chain are essential for minimizing exposure to the public. These include reducing stay-time of birds in markets to 1 day, standardizing poultry supply chains to limit transmission in pre-retail settings, and monitoring strains with epidemiological traits that pose a high risk of emergence. These actions will further limit human exposure to extant viruses and reduce the likelihood of the emergence of novel strains by decreasing the overall volume of transmission

    Compressive properties of min-mod-type limiters in modelling shockwave-containing flows

    Get PDF
    The long-ignored compressive properties of Min-mod-type limiter is investigated in this manuscript by demonstrating its potential in numerically modelling shockwave-containing flows, especially in shock wave/boundary layer interaction (SWBLI) problems. Theoretical studies were firstly performed based on Sweby’s total variation diminishing (TVD) limiter region and Spekreijse’s monotonicity-preserving limiter region to indicate Min-mod-type limiters’ compressive properties. The influence of limiters on the solution accuracy was evaluated using a hybrid-order analysis method based on the grid-independent study in three typical shockwave-containing flows. The conclusions are that, Min-mod-type limiter can be utilized as a dissipative and/or compressive limiter, but depending on the reasonable value of the compression parameter. The compressive Min-mod limiter tends to be more attractive in modelling shockwave-containing flows as compared to other commonly preferred limiters because of its stable computational process and its high-resolution predictions. However, the compressive Min-mod limiter may suffer from its slightly poor convergence, as that observed in other commonly accepted smooth limiters in modelling SWBLI problems. © 2020, The Author(s)

    Modeling convergent ON and OFF pathways in the early visual system

    Get PDF
    For understanding the computation and function of single neurons in sensory systems, one needs to investigate how sensory stimuli are related to a neuron’s response and which biological mechanisms underlie this relationship. Mathematical models of the stimulus–response relationship have proved very useful in approaching these issues in a systematic, quantitative way. A starting point for many such analyses has been provided by phenomenological “linear–nonlinear” (LN) models, which comprise a linear filter followed by a static nonlinear transformation. The linear filter is often associated with the neuron’s receptive field. However, the structure of the receptive field is generally a result of inputs from many presynaptic neurons, which may form parallel signal processing pathways. In the retina, for example, certain ganglion cells receive excitatory inputs from ON-type as well as OFF-type bipolar cells. Recent experiments have shown that the convergence of these pathways leads to intriguing response characteristics that cannot be captured by a single linear filter. One approach to adjust the LN model to the biological circuit structure is to use multiple parallel filters that capture ON and OFF bipolar inputs. Here, we review these new developments in modeling neuronal responses in the early visual system and provide details about one particular technique for obtaining the required sets of parallel filters from experimental data
    corecore