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Abstract

About 5 years ago NLR , Alenia/Gat and Fokker started jointly the development

of a flow simulation system for engine/airframe integration studies on propeller as

well as jet aircraft. The initial system was based on the Euler equations and made

operational for industrial aerodynamic design work. The system consists of three

major components: - a domain modeller, for the graphical interactive subdivision of

flow domains into an unstructured collection of blocks, - a grid generator, for the

graphical interactive computation of structured grids in blocks, - a flow solver, for

the computation of flows on multi-block grids. The industrial partners of the collab-

oration and NLR have demonstrated that the domain modeller, grid generator and

flow solver can be applied to simulate Euler flows around complete aircraft, including

propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft

Hydraulics has shown that both the domain modeller and grid generator can also be

applied successfully for hydrodynamic configurations. In this paper, an overview is

given about the main aspects of both domain modelling and grid generation.

*This investigation was partly performed under contract 01604N with the Netherlands Agency for
Aerospace Programs (NIVR).
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1 Introduction

'I'll(' underlying i(tea of the widely used and accepted multi-block approach is to subdivide

a g('onmtri(:al con@ex tlow donlain region into several smaller, more manageable regions,

referr(,(l to as t)locks. Tyl)ically there are several individual blocks in a given flow domain,

(,ach I)lock having three conll)utationa] coordinates. On each block there are six block-faces

with two conq)utationa[ coordinates. On each face there are four face-edges, containing

only (me computational coordinate. Furthermore, each edge has two vertices.

A gri(I in a block is represented by a number of discrete grid points, ordered in a three

dimensional array.

In general, the flow domain may be subdivided into any conceivable structure provided

that cell to cell matching on block boundaries is maintained. This does not require that

one block-face of a given block match exactly with a block-face of another block, only
that each cell on an interior block-face match with a cell of another interior block-face. In

our approach, it is possible to subdivide any block-face into two subfaces. A face which

consists of two subfaces is called a compound face. Each subface of a compound face is

also allowed to be compound again. A face which is not compound is called elementary.

Thus it is possible to subdivide a block-face into any number of elementary subfaces. With

the concept of compound faces, two individual blocks may be connected to each other by
a face which is a subface of one of the six block-faces of both blocks. This feature is called

" partial block boundary interfacing", i.e. any part of one block-face may be connected to

any compatible part of another Mock-face [1],[2]. In most applications this flexibility allows

the user to define much fewer and larger blocks than would be the case with "complete

boundary interfacing". An illustration of this effect is given by a simple 2D example
(Fig. 1).

The use of compound faces also requires the use of compound edges. A compound edge

is an edge which consists of two subedges. Each subedge is also allowed to be compound

again. An edge which is not compound is called elementary. Thus it is possible to subdivide

a face-edge into any number of elementary subedges. It is clear that a compound face must

have at least two opposite compound face-edges.

A multi-block system re(luires domain decomposition, i.e. the subdivision of the flow

domain into suitable blocks. In our approach, domain decomposition is done by a so called

domain modeller which is a graphical interactive code operational on Silicon Graphics

workstations. During (lomain decomposition, a user may interactively create vertices,

edges, faces and blocks. Tools are available to create edges and faces with a user-defined

geometrical shape (such as interior block-interfaces and block-edges), and edges and faces

which are constrained to a certain surface shape (particularly those conforming to the

geometry).

Output of the domain Inodeller are a topology and geometry file. The topology file

describes the arrangement of the blocks and the geometry file describes the geometrical

I)osition of the vertices and the geometrical shape of edges and faces. The topology and

geometry files are the main input files of the grid generator which is also a graphical in-

teractive code operational on Silicon Graphics workstations. Output of the grid generator
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is a grid file which contains the grid points in the blocks and the topological information

about the arrangement of the blocks. The grid file is the main input file for a flow solver.

In this paper, an overview is given about the main aspects of domain decomposition and

grid generation. The usability of the applied domain decomposition and grid generation

techniques is demonstrated for both aerodynamic and hydrodynamic configurations. A

general overview of the complete system (including flow simulation) may be found in [3].

2 Domain decomposition

Computer aided design (CAD) has become a standard tool in the aerospace industry for

geometrically defining developing configurations, and the majority of advanced designs

which are used in CFD studies have indeed been created on CAD systems. The differences

in the various CAD systems, however, have made it necessary to establish one universal

format for direct use during interactive domain modelling. Therefore, an entire configura-

tion surface is represented by a set of input configuration surfaces, each surface containing

a two dimensional ordered array of physical points. The input configuration surfaces are

input for the domain modeller.

The goal of domain modelling is the creation of a topology and geometry file, which

are required input files for the grid generator. The topology file defines the topology of

a multi-block system and is described in subsection 2.1. The geometry file defines the

geometrical position of the vertices, and the geometrical shape of the edges and faces, and

is described in subsection 2.2. The creation of the topology and geometry file during a

graphical interactive domain decomposition is described in subsection 2.3.

2.1 Topology definition

The blocks,faces,edges and vertices in a particular multi-block system are represented as

{B), {F}, {E}, {V) which are so called " label sets " The label sets are subsets of.IV': the

set of positive natural numbers.

The topology of a multi-block system describes the arrangement of blocks. The ar-

rangement of the blocks is defined by connectivity relations between the label sets. Only

five connectivity relations define the complete arrangement of the blocks in a particular

multi-block system.
The first one relates each block B to an ordered set of six block-faces:

VBEIB}: B _ (F1,F2, F3, F4, Fs, Fs). (1)

The second one relates each face F to an ordered set of four face-edges:

V F E {F}: F _ (E,,E2, E3, E4). (2)

The third one relates each edge E to an ordered set of two edge-vertices:

VEE{E}: E_(V_,V2). (3)



Compound faces and compound edges are introduced in order to allow partial block

boundary interfacing. A compound face consists of two subfaces. Each subface of a com-

pound face is also allowed to be compound again. A face which is not compound is

elementary. The set of compound and elementary faces are denoted as {F c} and {F _}.

Thus {F} = {F _} U {Fc}. The fourth connectivity relation

V F E {F_}: F _ (F1, F2). (4)

gives the two subfaces of each compound face.

Similarly, a compound edge consists of two subedges. The set of compound and ele-

mentary edges are denoted as {E ¢} and {E'}. Thus {E} = {E'}U{EC}, and the mapping

v E e {EC}:E (5)

gives the two subedges of each compound edge.

For a particularmulti-block system, the topology file,which is an output fileof the

domain decomposer and an input fileof the grid generator, contains nothing elseas the

definitionof these fiveconnectivityrelations.

The five connectivity relationsshould obey certain rules such that the topology is

meaningful. For instance,a block should contain exactly twelve edges and eight vertices,

and a face should contain exactly four vertices.The rulesare such that the block-edges,

block-verticesand face-verticesare uniquely defined.

The ordering in the relations(I),(2)and (3) are alsoused to definethe orientationof all

blocks,faces and edges in a particularmulti-blocksystem. In a block,the firstcoordinate

runs from face FI to face F2, the second coordinate runs from face F3 to face F4, the third

coordinate runs from face Fs to face F6. Thus the three pairs of opposite faces in a block

are (F1, F2),(F3, F4) and (Fs, F6). In a face, the first coordinate runs from edge E, to edge

E2, the second coordinate runs from edge Ez to edge E4. Thus (E,,E2) and (E3, E4) are

the two pairs of opposite edges in a face. Finally, the coordinate direction of an edge is

from vertex V, to vertex V_. The ordering in relations (4) and (5) is of no importance.

The relation (1),(2) and (3) are also used to identify all kinds of geometrical degenera-

tions. For instance, an edge E with two equal vertex labels, i.e. E _ (V,, V2) and

V, = V2, is an edge whose curve-shape is degenerated to a point. This is consistent because

the orientation of an edge with two equal vertex labels is undefined. A face with two equal

opposite edges, i.e. F _ (E,, E2, E3, E4) and E, = E2 or E3 = E4, is face with a surface

shape degenerated to a curve. If both pairs of opposite edges are equal then the surface

shape is a point.

2.2 Geometry definition

The geometrical shape of a vertex is a physical point. The geometrical position of all

vertices in a particular multi-block system are stored on the geometry file.

The geometrical shape of an elementary edge is a curve. A default elementary edge is an

edge of which the edge-curve shape is a straight line segment between the two edge-vertices.
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A non-default elementary edge is an edge of which tile edge-curve shape is described by an

ordered one dimensional array of physical (control) points. The ordering is defined by tile

topology relation (3): the first control point is close to the position of vertex Vi, the last

control point is close to the position of vertex V2. Cubic I{ermite interpolation between

the control points is used to describe the curve continuously. A correction procedure is

automatically performed such that the curve matches tile two edge-vertices exactly. The

control points of the non-default elementary edges in a particular multi-bh)ck system are

also stored on the geometry file.

The geometrical shape of an elementary face is a surface. A default elementary face is

a face of which the face-surface shape is defined by tile geometrical curw' shape of the fl)ur

face-edges only (by bilinear transfinite interpolation in which arc length scaled coordinates

are used). A non-default elementary face is a face of which the geometrical surfac¢" shape is

described by a well ordered two dimensional array of physical (control) points. Not," that

the geometrical representation of a non-default elementary face is the same as for the input

configuration surfaces. The topology is again used to define the ordering of the control

points: relation (2) is used for faces. Bicubic Hermite interpolation between the control

points is used to describe the surface continuously. A correction procedure is antomatically

performed such that the surface matches the four face-edge curves exactly. The control

points of the non-default elementary faces in a particular nmlti-I)lock system are stor('(I on

the geometry file.

2.3 Interactive domain decomposition

The purpose of the domain modeller is to give users the capability to produce, inspect and

modify the topology and geometry file. Hence, the topology and geometry files are input

and/or output files of the domain modeller.
The domain modeller allows the content of the topology and geometry file not to I)e a

complete topology, nor a single structure: this gives the users the capability to interrupt

the work-session and to restart it at any time. The user can also create temporary dummy

entities for reference or to help the building of more complex structures. When the user

delivers the topology and geometry files to thegridgenerator, the not necessary faces, edges

and vertices must be removed.

The functions of the domain modeller can be grouped into four sets: the block decom-

position functions, the topological object management functions, the input functions and

the view manipulation functions.

Conceptually, the only actions performed by the domain modeller are creations, killings

and inspections of topological entities. Many different ways to do it are provid_,d by the

block decomposition functions.

The user usually starts with a reference geometry, which may be ¢leliv_red as a s¢q, of

input configuration surfaces and which is converted into a set of vertices, edg¢'s and faces

by the domain modeller. The reference geometry can be manipulated in sew'ral ways. TIw

user can take the input faces as final block-faces, or he can reface them by creating the

block faces as close as possible to the reference geometry, and then proj¢,cting t,h_,lll onto
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it.

During a typical block decomposition session, vertices and non-default edges and faces

are created (or copied from external files). A new block is created by indicating (by mouse)

eight block-vertices. The required edges and faces of the new block are then automatically

detected and, when they do not already exist, created by default procedures. Usually

only a few edges and faces have to be created explicitly; the vast majority is produced

by default procedures. Some specific functions help to create new entities by geometrical

manipulation of existing ones.

The user can read several sets of topology and geometry files during a work-session: the

resulting topology will be the union of the contents of each set. Separate sets of entities

can be connected by replacing entities of one set with entities of the other.

Because a complete topology may consist of hundreds of blocks, and it is pratically

impossible to handle more than 10 to 20 blocks at once, it is necessary to give the users

the capability to operate with sub-sets of topological entities within the domain modeler.

Those sub-sets are called "topological objects". A topological object is a topologically

consistent set of entities: it means that each entity contained in a topological object is

defined by entities which belong to the same object. For example, if an edge is present,
also its two vertices must be there.

With the topological object management functions the user can copy and delete entities

into and from an object, and he can move entities from an object to another one. When

new entities are created, they are automatically copied into a pre-defined object (the so-

called "default object"). The topological objects can be set visible or not visible on the

graphical screen. The user can select the default object, can assign a name to an

object, can list the contents of an object on the screen, and can visualise, with different

interpolation modes, the edges and tile faces contained in an object. Since the content of

each single topological object is a consistent topology, it is possible to write and read the

topology and geometry file related to one single object only.

The concept of a topological object as a set of entities is meaningful even if no graphic

screen is available. The topologicalobjects are also used by some functions as input sets of
entities.

To execute a block-decomposition or a topological object management function, it is

necessary to prepare a set of input data. This set contains a code number, which identifies

tile command to be executed, and usually some other values, depending on the command

itself. In order to provide a standard way to input data, whatever command has to be

executed, a set of so-called "input functions" was designed. Those functions represent the

interface between tile user (the keyboard) and domain modeller. It is possible to check

the input data before tile command is actually executed, and to correct any value, when

it is wrong, without re-entering the complete set of data. The command code itself can be

changed, without re-entering the other data, when they are correct.

The input functions give the user a complete freedom to choose the sequence of input.

The sequence of input functions selected by the user is listed in a so called history file. The

history file records a complete block decomposition session and it may therefore be used

to replay the block decomposition.
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Finally, the view manipulation functions give the capability to visualize the entities on

the graphic screen by rotating, translating, zooming, etc.

More details about domain decomposition may be found in [4].

3 Grid generation

The topology and geometry files are input files for the grid generator. Two other files are also

important during grid generation: - a grid dimension file which contains the information

for the specification of the grid dimensions of the multi-block grid, and - a grid control

file which contains the grid control parameters for tuning of the grid. These two files are

input and/or output files of the interactive grid generator.

A batch version of the grid generator is also available. The batch version is operational

on a supercomputer (NEC-SX3) and is especially useful to create fine grids. The general

way of working is as follows. Coarse or medium grids are generated during an interactive

grid generation session. The generated grids are defined according to the user specified grid

dimensions and grid control parameters. When the user is satisfied about the grid quality

of the created grids, then the grid dimensions and grid control parameters are written to

the grid dimension file and grid control file which are then output files of the interactive

grid generator. Next, the grid dimensions are enlarged by a constant factor (the user has

to modify, by an editor, only one number on the grid dimension file), and the complete set

of four input files (topology file, geometry file, grid dimension file and grid control file)

is sent to the super computer where a fine grid is generated by the batch version of the

grid generator. This way of working is successful because of the fact that all grid control

parameters have a relative meaning with respect to the grid dimensions.

In subsection 3.1 it is described how the grid dimensions of a particular multi-block

system are easily defined. The next three subsections describe the main grid generation

procedures for,.respectively,_edges, faces and blocks. Local grid refinement is described in

subsection 3.5. The general way of working during interactive grid generation is described

in subsection 3.6.

3.1 Grid dimension specification

The specification of the grid dimensions; i.e. the number of grid cells, of all blocks, faces

and edges in a particular multi-block system requires the grid dimension specification of

only a few suitable chosen edges. This is due to the constraining effect of the requirement

that each grid line in each block must be continuous over any face that the block has in

common with any adjacent block. These constraint relations depend only on the topology:

each two opposite edges in a face must have the same grid dimension, and each four

opposite edges in a block must have the same grid dimension. This observation makes

it possible to subdivide the set of edges {E} into disjunct sets (called groups) with the

property that the grid dimension of all edges in the same group must be the same, while

the grid dimensions of two edges in different groups are generally different. Furthermore,
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simple sum relations between the grid dimensions of different groups may exist due to the

existence of compound edges.If, for instance, a compound edge E with subedges El, E2

belongs to the groups G andG1, G2, respectively, then it is clear that the grid dimension of

group G is equal to the sum of the grid dimensions of groups G1 and G2.

The groups and the sum relations between the groups are automatically generated from

the topology. Suppose that a particular multi-block system contains N groups with M sum

relations between the groups. Then there are only N - M independent grid dimensions,

and the user has to specify the grid dimensions of only N - M suitable chosen edges in

order to define the grid dimensions of all groups, and consequently, of all edges, faces and
blocks.

3.2 Grid generation in elementary edges

In subsection 2.2 it is described how a smooth curve is constructed for each elementary

edge. Such a smooth curve is parameterized according to

PE:S E [0,11 _ (x,y,z) E T¢3, (6)

where s is the scaled arc length. The orientation is defined by the topology: s runs from

vertex 1/1 to vertex V2. The function PE is called the geometrical shape function of an

edge. A grid control function GE of the form:

GE: _ E [0, 11 _ s E [0, 11, (7)

maps the computational _ space onto the s space. The orientation of the computational

coordinate is the same as for the scaled arc length coordinate s. A grid distribution function

maps the computational _ space onto the edge curve and is defined as the composite

mapping PEOGE(_) = PE(GE(_)). Thus the grid points of an edge with N grid cells are

computed according to

PEOGE(_i), _i = i/N, i = O...N. (8)

A grid which is equally distributed along an edge is obtained by taking s = GE(_) = _.

The general form of the function GE(_) is taken as

GE(() = exp(_ aiTli)dTh (9)
i=0

where the five coefficients c_i,i = 0... 4 are constants. The chosen form of the function

GE implies that the corresponding stretching function, defined as G_/GE, is a polynomial

function. At an elementary edge a user may specify two boundary conditions at each

vertex, so that at most four boundary conditions exist:These four boundary conditions,

together with the constraint
4

--]0'exp(_ a, Tl')d_ = l, (10)
i=0

are used to compute the five coefficients ai, i = 0... 4. When the number of boundary

conditions is less than four, then the five coefficients are still uniquely determined by

demanding that the degree of the polynomial stretching function is as low as possible.
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3.3 Grid generation in elementary faces

The surface shape of an elementary face is parameterized by a geometrical shape function

of the form:

PF: (s,t) • [0,1] 2 H (x,y,z) • R3. (11)

The orientation of s and t is defined by the topology: s runs from edge E1 to E2 and t runs

from edge E3 to E4. At the boundary of the unit square in the (s, t) space, the function

PF coincides with the geometrical shape functions of the four face-edges:

Pf(s,O) = PEa(s) , PF(s, 1)= PE,(s),

PF(O,t) = PE,(t) , PF(1,t)= PE2(t). (12)

Thus s and t are scaled arc lengths along the boundary of the surface.

Similarly as for elementary edges, a grid control function is used to map tile computa-

tional (_, r/) space onto the (s,t) space:

GF: (_,T/) • [0,1] 2 H (s,t) • [0,112 . (13)

The grid distribution function PFOGF maps the computational space onto tile surface. The

orientation of the ({, r/) space is the same as for the (s, t) space. The grid points of a face

with N × M grid cells are found by

PFoGF(_i,Tb), _i = i/N, 71j = j/M, i = O... N, j = O... M. (14)

The grid generation in an elementary face is preceded by the grid generation in the

four face-edges. Thus the grid points along the four face-edges are known and also their

corresponding s and t values. What remains is the computation of the grid points in the

interior of the face.

The computation of the grid control function Gr is equivalent with the computation

of the two functions

3 = s(_,r/) , t = t(_c,r/). (15)

These two functions are known at the boundary of the unit square in the computational

domain:

_(_,o) = _(_) ,
_(_,1) = _,(_) ,
t(o,_)=t_,(_) ,
t(1,71) = tE_(rl) ,

Note that the functions 3E3 , SE4 , tEl, rE2 are edge

(9) and are thus monotonously increasing.

A simple and robust way to compute (s, t) for

square is provided by next two equations:

s(0,,) =0,
s(1,7/) = 1,

t(_,0) = 0,
t(_, 1)= 1. (16)

grid control functions of the form of Eq.

values of (_, 7/) in the interior of the unit

= _(_)(1 - t) + ._z,(_)t,
t = tEa(r/)(1-- a) + tE_(71)s.

(17)

(18)
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Eq. (17) implies that a grid line _¢ = const, is mapped to the unit square in the (s,t)

space as a straight line: s is a linear function of t. Eq. (18) implies that a grid line 7/=

const, is also mapped to the unit square in the (s, t) space as a straight line: t is a linear

function of s. For given values of _ and rt the corresponding s and t values are found as the

intersection point of the two straight lines. It can be easily verified that the grid control

fimction which corresponds to this system has a positive Jacobian i.e. J = s_t, - s,t_ > O.

ltowever, the system (17),(18)is completely determined by the grid point, distribution

along the four face-edges and provides no grid control about the grid line slopes and

tirst grid cell lengths. In order to have more grid control, the system is extended by

s : SE3(_)(1 - t) + SE,(_)t + f(_,t), (19)

t : tE,(q)(1 - s) + tE:(q)s +g(q,s). (20)

In this grid generation system, Eq. (19) implies that a grid line _ = const, is mapped to

the unit square in the (s, t) space as a curve which can be described as: s is a function of t,

and Eq. (20) implies that a grid line 7] = const, is mapped to the unit square in the (s, t)

space as a curve which can be described as: t is a function of s. Again, for given values of

,_ and q the corresponding s and t values are found as the intersection point of these two
curves.

The functions f and 9 are correction functions with respect to the straight lines of

system (17),(18). Hence, f and g are identical zero at the boundary of the unit squares in

respectively the (_, t) and (7/, s) space. The normal derivatives of f and 9 at the boundary

may be used to define the grid line slopes and first grid cell lengths.

The values of Of/Ot(_,O) and Of/Ot(_, 1) may be used to define the grid line slopes

of the grid lines _ = const, along the face-edges E3 and E4, respectively. The values of

Of/O_(O, t) and Of/O_(1, t) may be used to control the first grid cell lengths of the grid lines

r/ = const, along the face-edges E1 and E2. Similar remarks can be made for the derivatives

of tile function g. More details about the relation between the normal derivatives of f and

g at tile boundary of the unit squares and the corresponding grid line slopes and first grid

cell lengths at the boundary of the face in physical space may be found in [5].

When the normal derivatives of f and 9 are defined, then it remains to compute f and

9 in the interior of the unit squares. This is done by solving the biharmonic equations [6]:

AAf = O,

on the unit square (_¢,t) E [0, 1] 2, and

(21)

AAg = 0, (22)

on the unit square (q,s) E [0, 1]2.

The user control about the grid line slopes is especially useful at singularities. An

example is shown in Fig. 2. Such O-type meshes are needed at trailing edges of airfoils,
wings, exhaust outlets, etc.

For both grid generation systems (17),(18)and (19),(20), the two families of grid lines

in the(s, t) space are determined independently and a grid point is found as the intersection
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point of two individual grid lines of each family.This approach is especially successful for

Navier-Stokes grids (boundary layers) where the characteristics of the two families of the

grid lines are totally different.

3.4 Grid generation in blocks

The grid generation in a block is preceded by grid generation in the six block-faces. Thus,

the grid point distribution on the six block faces is known, and what is left to be done is

the computation of the grid in the interior of the block. Two methods are used to compute

the interior grid points in a block.
The first method is based on trilinear transfinite interpolation in the computational

(_, _1,_) space. Thus linear blending functions are used: _, (1 - _), 7, (1 - 71), if, (1 - _). '

The second method is an extension of grid generation system (17),(18) for faces. A

geometrical shape function is constructed which defines the volume shape of a block:

P,: (s,t,u) C [0,113 H (x,y,z)E 7_3. (23)

where the orientation of (s, t, u) is again defined by the the topology. At the boundary of the

unit cube in (s, t, u) space, the function PB coincides with the geometrical shape functions

of the six block faces. In fact, the function PB is constructed by trilinear transfinite

interpolation in (s,t, u) space.

A mapping from computational (_, r/, _) onto the (s, t, u) is defined as

s = SE,(_)(1 -- t)(1 -- u) + SE,(_)t(1 -- u) + SE3(()(i -- t)u + SE,(_)tu, (24)

t = tEs(T/)(1 -- S)(1 -- U) -4-tE_(_/)S(1 -- U) -4-tE,(_/)(1 -- _)U + tEs(U)SU, (25)

u = UEg(_)(1--S)(1--t)+UElo(_)S(1--t)+UE,,(_)(1--s)t+UE_2(_)st, (26)

where the edges (El, E2, E3, E4),(Es, E6, ET, E8), and (E9, Era, E_, E_2) are the sets of four

block-edges in respectively the s-,t- and u- direction. The functions SE1,..., UEI_ are the

corresponding edge grid control functions. For given values of _,r/and _, the corresponding

s,t and u values are computed by solving Eqs. (24),(25),(26) simultaneously. It can be

easily verified that the grid control function which corresponds to this system has a positive

Jacobian. Finally, the grid points in the interior of a block are computed by the grid

distribution function PBoGB.

Both methods usually provide a good degree of clustering throughout the grid, but local

regions of crossed grid lines, corresponding to negative values of cell volumes sometimes

result. However, it appears that negative cell volumes occur much more seldomly when the

second method is applied (then grid folding is caused by the geometrical shape function

P.).

3.5 Local Grid refinement

A multi-block grid with the property that each grid line in a block is continuous over any

face that the block has in common with any adjacent block is called a basic multi-block
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grid. The grid dimensions of a basic multi-block grid are defined in a way as described in

subsection 3.1.

However, it is very useful that the grid in a particular block can be refined (coarsened)

without changing the grid in ,the surrounding blocks, so that refined (coarsened) grids can

be used in blocks located in regions where large (small) flow gradients are expected.

The grid refinement (coarsening) in a particular block is user-specified by three grid

refinement/coarsening factors in each computational direction of that block. Of course, if

grid coarsening is applied in a certain computational direction then the grid dimension in

that direction must be dividable by the corresponding coarsening factor.

There is one restriction about the way local grid refinement is applied. At a particular

internal block-face, there are in general two different grids which belong to the two blocks

which have this block-face in common. The restriction is that one of the two grids in the

block-face is coarse with respect to the other, so that a grid cell in the coarse grid may be

connected to a number of fine grid cells in the fine grid. This property facilitates a flow

solver to remain conservative across block-faces: the flux through a coarse grid cell-face

is given by the sum of the fluxes through the corresponding fine-grid cell-faces [7]. An

example of the application of local grid refinement is shown in Fig. 3.

3.6 Interactive grid generation

The interactive grid generator is operational on the Silicon Graphics Iris 4D workstation

family.

During an interactive session, the first action of a user is to read the topology and

geometry file of a particular multi-block system. After that, a selection panel is available

to visualize the topology and geometry. The panel contains all block labels and the user

may select (by mouse) a number of blocks from the panel. The result is a screen which

depicts the selected blocks. The topology of each block is represented by the six block-

face labels, all elementary and compound face labels of which a block-face may consist of,

all corresponding elementary and compound edge labels, and all vertex labels (the total

number of vertices is in general more than eight). The geometry of each block is represented

only by the geometrical shape of all elementary edges on the block boundary (the total

number of elementary edges on the block boundary is more than twelve iin general), i

Next, the grid dimensions are specified. The mouse is used to select an edge from the

screen, and a number is given (by keyboard) which defines the number of grid cells along

the edge. With the group concept described in subsection 3.1, the program automatically

identifies those edges which obtain the same grid dimension value. If there are compound

edges, then the sum relations between the groups are used to check if it is possible to

compute the dimensions of other edges. If an edge dimension is known then the colour of

the edge on the screen is changed and the grid dimension value appears at the middle of

the edge.

This process is repeated until the dimensions of all edges are known. The user may then

write the grid dimension file which defines the grid dimensions of the multi-block system.

218



If a grid dimension file already exists then the process of specifying the grid dimensions

may be skipped and the user can simply read the grid dimension file.

When the grid dimensions are known, a second selection panel becomes available which

contains the i, j, k values of all grid planes in each block. If the user selects some i, j

or k values of some blocks then the corresponding grid planes in the blocks are shown on

the screen. Thus the second selection panel is used to specify which grid planes must be

visualized while the first selection panel is used to specify which blocks must be visualized

topologically. In the interactive grid gene_xtor there are no explicit commands to compute

a grid in some edges, faces or blocks, but instead of that, the visualization of grid planes in

blocks is automatically converted to commands to compute the grids in the corresponding

block-faces (if a grid plane in a block corresponds with a block-face) or blocks (if a grid

plane is an interior grid plane).

Next, the grid tuning process may start. Along elementary edges, grid control is avail-

able only at the two vertices of the edges. The user may specify a grid density p at a vertex

of an elementary edge by selecting the edge and vertex (via their labels) from the screen by

mouse and by defining p by keyboard. The result is that the first grid cell length along the

edge at the vertex becomes pL/N where L is the lenth of the edge and N is the number of

grid cells along the edge. It is also possible to specify a stretching value R at a vertex of an

elementary edge. The result is that the ratio between the second and first grid cell length

at the vertex becomes 1 + (R/N). Finally_ the user may "connect" edges. If an edge E2

at vertex V2 is connected to an edge E1 at vertex _ then the first grid cell length along

edge E2 at V_ becomes equal to the first grid cell length along edge E1 at V1. In this way

large chains of connected edges may be constructed, and if the grid in the "mother" edge

is changed, the grid in all other edges in the chain are then also automatically changed.

The program automatically takes care that a chain is not closed. The connection of edges

is very useful to construct smooth grids across elementary edges.

Grid generation in an elementary face is preceded by grid generation in the four face-

edges (the program automatically computes the grid in the four face-edges before it com-

putes the grid in the interior of a face). Thus the grid points along the four face-edges are

known. Grid generation in elementary faces may be based on system (17),(18) or system

(19),(20). If system (17),(18) is used then the grid in an elementary face is determined

by the grid point distribution along the four face-edges only. If system (19),(20) is used,

then the grid in an elementary face is also determined by the grid line slopes and first

grid cell lengths along the four face edges. At the corners of the face, the angle between

the two face-edges is known and also the first grid cell lengths along the two face-edges.

Default, these angles and grid cell lengths at the corners are interpolated (using arclengths)

to define the grid line slopes and first grid cell lengths on the four face edges. Then the

boundary conditions are sufficient to solve system (19),(20). However, the user may also

specify explicitly the grid line slope and first grid cell length at certain locations along the

four face-edges (which is for instance necessary at singularities). In that case, the mouse is

used to identify the location along a face-edge, and the grid line slope angle and first grid

cell length are specified by keyboard.

Grid generation in blocks is preceded by grid generation in the six block-faces (the
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program automatically computes the grid in the six block-faces before it computes the grid

in the interior of the block). Thus the grid points on the six block-faces are known. Grid

generation in a block may be based on trilinear transfinite interpolation in computational

or arclength scaled space. For both methods the grid in the block is determined

by the grid point distribution on the six block-faces only. However, grid folding occurs

much more seldomly when trilinear transfinite interpolation in arclength scaled space is

applied.

During the interactive session the user may change at any moment the grid dimensions

or apply local grid refinement. Local grid refinement in a block is performed by specifying

the grid refinement/coarsening factors in the three computational directions of a block. It is

not necessary to change the values of the grid tuning parameters when the grid dimensions

are changed because their values are relative with respect to the grid dimensions.

One interactive session is in general not sufficient to tune the complete grid for a

complex configuration. Therefore at the end of a session the user may write the grid

dimension and grid control file (which contains all grid tuning parameters) and also a grid

file which contains the partially constructed grid. Then, in a next session, the user can

read these files and continue the grid generation process.

There are of course more additional "tools" in the interactive grid generator. For

example, for grid inspection it is necessary to zoom, rotate and translate. Furthermore, it

is possible at any moment to switch on and of the labels of the blocks, faces, edges and

vertices which are selected via the first selection panel.

4 Applications

The usability of the applied domain decomposition and grid generation techniques is

demonstrated for both aerodynamic and hydrodynamic configurations.

Complex aerodynamic configurations are shown in Figs. 4 and 5. Some results about

the numerical flow simulation about the Fokker 50 and Fokker 100 may be found in [8].

Fig. 5a shows the aerodynamic surface of the Alenia transport aircraft G222 and Fig. 5b

shows the corresponding grid.

Hydrodynamic configurations are shown in Figs. 6 and 7. Fig. 6 shows the grid in

a part of the river Rhine. High grid density is not required at the boundary but in the

interior of the river due to a minor bed which is a typical hydraulic feature. The topology

contains five blocks. Fig. 7 is an example of a complex hydraulic structure to be built in

tile river Maas. The resulting topology is shown in Fig. 7a, the surface grid is shown in Fig.

7b. Note that local grid refinement has been applied in one block. Fig. 7c shows the grid in

an interior circular plane. Note that such a plane contains four O-type singularities. More

details about block decomposition and grid generation for hydrodynamic configurations

may be found in [9].

Finally, Fig. 8 illustrates that it is possible to generate Navier-Stokes grids with

the existing grid generation techniques.
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a) Complete block boundaryinterfacing

b) Partial INockboundary interfacing

c) Grid
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Fig. 1 Part of harbour of Rotterdam near Noordereiland



Fig. 2 Grid nearO-type singularity
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Fig. 3 Leading edge region of 3-block fine grid
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Fig. 4 Fokker 50 and Fokker 100 configurations
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Fig. 5a Aerodynamic Surface of Alenia transport aircraft G222
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Fig. 5b Corresponding multi-block grid on aircraft surface and symmetry plane
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Fig. 6 Grid in part of the river Rhine

a) Topolooy -- -

Fig. 7 Water power station
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b) Surface grid
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c) Grid in interiorcircularplane

Fig. 7 Water power station (continued)



Fig. 8 Navier-Stokes grid around a wing
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