9 research outputs found

    Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity

    Get PDF
    Background: Spontaneous retinal activity (SRA) is important during eye-specific segregation within the dorsal lateral geniculate nucleus (dLGN), but the feature(s) of activity critical for retinogeniculate refinement are controversial. Pharmacologically or genetically manipulating cholinergic signaling during SRA perturbs correlated retinal ganglion cell (RGC) spiking and disrupts eye-specific retinofugal refinement in vivo, consistent with an instructive role for SRA during visual system development. Paradoxically, ablating the starburst amacrine cells (SACs) that generate cholinergic spontaneous activity disrupts correlated RGC firing without impacting retinal activity levels or eye-specific segregation in the dLGN. Such experiments suggest that patterned SRA during retinal waves is not critical for eye-specific refinement and instead, normal activity levels are permissive for retinogeniculate development. Here we revisit the effects of ablating the cholinergic network during eye-specific segregation and show that SAC ablation disrupts, but does not eliminate, retinal waves with no concomitant impact on normal eye-specific segregation in the dLGN. Results: We induced SAC ablation in postnatal ferret pups beginning at birth by intraocular injection of a novel immunotoxin selective for the ferret vesicular acetylcholine transporter (Ferret VAChT-Sap). Through dual-patch whole-cell and multi-electrode array recording we found that SAC ablation altered SRA patterns and led to significantly smaller retinal waves compared with controls. Despite these defects, eye-specific segregation was normal. Further, interocular competition for target territory in the dLGN proceeded in cases where SAC ablation was asymmetric in the two eyes. Conclusions: Our data demonstrate normal eye-specific retinogeniculate development despite significant abnormalities in patterned SRA. Comparing our current results with earlier studies suggests that defects in retinal wave size, absolute levels of SRA, correlations between RGC pairs, RGC burst frequency, high frequency RGC firing during bursts, and the number of spikes per RGC burst are each uncorrelated with abnormalities in eye-specific segregation in the dLGN. An increase in the fraction of asynchronous spikes occurring outside of bursts and waves correlates with eye-specific segregation defects in studies reported to date. These findings highlight the relative importance of different features of SRA while providing additional constraints for computational models of Hebbian plasticity mechanisms in the developing visual system. Electronic supplementary material The online version of this article (doi:10.1186/1749-8104-9-25) contains supplementary material, which is available to authorized users

    Grading the thalamus: how can an ‘Eph’ be excellent?

    No full text

    Activity-dependent disruption of intersublaminar spaces and ABAKAN expression does not impact functional on and off organization in the ferret retinogeniculate system

    Get PDF
    <p>Abstract</p> <p>In the adult visual system, functionally distinct retinal ganglion cells (RGCs) within each eye project to discrete targets in the brain. In the ferret, RGCs encoding light increments or decrements project to independent On and Off sublaminae within each eye-specific layer of the dorsal lateral geniculate nucleus (dLGN). Here we report a manipulation of retinal circuitry that alters RGC action potential firing patterns during development and eliminates the anatomical markers of segregated On and Off sublaminae in the LGN, including the intersublaminar spaces and the expression of a glial-associated inhibitory molecule, ABAKAN, normally separating On and Off leaflets. Despite the absence of anatomically defined On and Off sublaminae, electrophysiological recordings in the dLGN reveal that On and Off dLGN cells are segregated normally. These data demonstrate a dissociation between normal anatomical sublamination and segregation of function in the dLGN and call into question a purported role for ABAKAN boundaries in the developing visual system.</p

    Epibatidine Application In Vitro Blocks Retinal Waves Without Silencing All Retinal Ganglion Cell Action Potentials in Developing Retina of the Mouse and Ferret

    No full text
    Epibatidine (EPI), a potent cholinergic agonist, disrupts acetylcholine-dependent spontaneous retinal activity. Early patch-clamp recordings in juvenile ferrets suggested that EPI blocks all retinal ganglion cell (RGC) action potentials when applied to the retina. In contrast, recent experiments on the developing mouse that relied on multielectrode array (MEA) recordings reported that EPI application decorrelates the activity of neighboring RGCs and eliminates retinal waves while preserving the spiking activity of many neurons. The different techniques used in previous studies raise the question of whether EPI has different effects on RGC activity in mouse compared with that in ferret. A resolution of this issue is essential for interpreting the results of developmental studies that relied on EPI to manipulate retinal activity. Our goal was to compare the effects of EPI on the spontaneous discharges of RGCs in mouse and ferret using 60-electrode MEA as well as patch-clamp recordings during the developmental stage when retinal waves are driven by acetylcholine in both species. We found that in both mouse and ferret EPI decorrelates RGC activity and eliminates retinal waves. However, EPI does not block all spontaneous activity in either species. Instead, our whole cell recordings reveal that EPI silences more than half of all RGCs while significantly increasing the activity of the remainder. These results have important implications for interpreting the results of previous studies that relied on this cholinergic agonist to perturb retinal activity
    corecore