192 research outputs found

    A MeerKAT, e-MERLIN, H.E.S.S. and Swift search for persistent and transient emission associated with three localised FRBs

    Get PDF

    HESS J1809-193: a halo of escaped electrons around a pulsar wind nebula?

    Full text link
    Context. HESS J1809-193 is an unassociated very-high-energy γ\gamma-ray source located on the Galactic plane. While it has been connected to the nebula of the energetic pulsar PSR J1809-1917, supernova remnants and molecular clouds present in the vicinity also constitute possible associations. Recently, the detection of γ\gamma-ray emission up to energies of \sim100 TeV with the HAWC observatory has led to renewed interest in HESS J1809-193. Aims. We aim to understand the origin of the γ\gamma-ray emission of HESS J1809-193. Methods. We analysed 93.2 h of data taken on HESS J1809-193 above 0.27 TeV with the High Energy Stereoscopic System (H.E.S.S.), using a multi-component, three-dimensional likelihood analysis. In addition, we provide a new analysis of 12.5 yr of Fermi-LAT data above 1 GeV within the region of HESS J1809-193. The obtained results are interpreted in a time-dependent modelling framework. Results. For the first time, we were able to resolve the emission detected with H.E.S.S. into two components: an extended component that exhibits a spectral cut-off at \sim13 TeV, and a compact component that is located close to PSR J1809-1917 and shows no clear spectral cut-off. The Fermi-LAT analysis also revealed extended γ\gamma-ray emission, on scales similar to that of the extended H.E.S.S. component. Conclusions. Our modelling indicates that based on its spectrum and spatial extent, the extended H.E.S.S. component is likely caused by inverse Compton emission from old electrons that form a halo around the pulsar wind nebula. The compact component could be connected to either the pulsar wind nebula or the supernova remnant and molecular clouds. Due to its comparatively steep spectrum, modelling the Fermi-LAT emission together with the H.E.S.S. components is not straightforward. (abridged)Comment: 14 pages, 10 figures. Accepted for publication in A&A. Corresponding authors: Vikas Joshi, Lars Mohrman

    Detection of extended gamma-ray emission around the Geminga pulsar with H.E.S.S

    Get PDF
    Geminga is an enigmatic radio-quiet gamma-ray pulsar located at a mere 250 pc distance from Earth. Extended very-high-energy gamma-ray emission around the pulsar was discovered by Milagro and later confirmed by HAWC, which are both water Cherenkov detector-based experiments. However, evidence for the Geminga pulsar wind nebula in gamma rays has long evaded detection by imaging atmospheric Cherenkov telescopes (IACTs) despite targeted observations. The detection of gamma-ray emission on angular scales > 2 deg poses a considerable challenge for the background estimation in IACT data analysis. With recent developments in understanding the complementary background estimation techniques of water Cherenkov and atmospheric Cherenkov instruments, the H.E.S.S. IACT array can now confirm the detection of highly extended gamma-ray emission around the Geminga pulsar with a radius of at least 3 deg in the energy range 0.5-40 TeV. We find no indications for statistically significant asymmetries or energy-dependent morphology. A flux normalisation of (2.8±0.7)×1012(2.8\pm0.7)\times10^{-12} cm2^{-2}s1^{-1}TeV1^{-1} at 1 TeV is obtained within a 1 deg radius region around the pulsar. To investigate the particle transport within the halo of energetic leptons around the pulsar, we fitted an electron diffusion model to the data. The normalisation of the diffusion coefficient obtained of D0=7.61.2+1.5×1027D_0 = 7.6^{+1.5}_{-1.2} \times 10^{27} cm2^2s1^{-1}, at an electron energy of 100 TeV, is compatible with values previously reported for the pulsar halo around Geminga, which is considerably below the Galactic average.Comment: 16 pages, 15 figures, 7 tables. Accepted for publication in Astronomy & Astrophysic

    Astronomy outreach in Namibia : H.E.S.S. and beyond

    Get PDF
    Astronomy plays a major role in the scientific landscape of Namibia. Because of its excellent sky conditions, Namibia is home to ground-based observatories like the High Energy Spectroscopic System (H.E.S.S.), in operation since 2002. Located near the Gamsberg mountain, H.E.S.S. performs groundbreaking science by detecting very-high-energy gamma rays from astronomical objects. The fascinating stories behind many of them are featured regularly in the "Source of the Month", a blog-like format intended for the general public with more than 170 features to date. In addition to other online communication via social media, H.E.S.S. outreach activities have been covered locally, e.g. through 'open days' and guided tours on the site itself. An overview of the H.E.S.S. outreach activities are presented in this contribution, along with discussions relating to the current landscape of astronomy outreach and education in Namibia. There has also been significant activity in the country in recent months, whereby astronomy is being used to further sustainable development via human capacity-building. Finally, as we take into account the future prospects of radio astronomy in the country, momentum for a wider range of astrophysics research is clearly building — this presents a great opportunity for the astronomy community to come together to capitalise on this movement and support astronomy outreach, with the overarching aim to advance sustainable development in Namibia

    Detection of new Extreme BL Lac objects with H.E.S.S. and Swift XRT

    Get PDF
    Extreme high synchrotron peaked blazars (EHBLs) are amongst the most powerful accelerators found in nature. Usually the synchrotron peak frequency of an EHBL is above 1017^{17} Hz, i.e., lies in the range of medium to hard X-rays making them ideal sources to study particle acceleration and radiative processes. EHBL objects are commonly observed at energies beyond several TeV, making them powerful probes of gamma-ray absorption in the intergalactic medium. During the last decade, several attempts have been made to increase the number of EHBL detected at TeV energies and probe their spectral characteristics. Here we report new detections of EHBLs in the TeV energy regime, each at a redshift of less than 0.2, by the High Energy Stereoscopic System (H.E.S.S.). Also, we report on X-ray observations of these EHBLs candidates with Swift-XRT. In conjunction with the very high energy observations, this allows us to probe the radiation mechanisms and the underlying particle acceleration processes

    Science verification of the new FlashCam-based camera in the 28 m telescope of H.E.S.S.

    Get PDF
    In October 2019 the central 28 m telescope of the H.E.S.S. experiment has been upgraded with a new camera. The camera is based on the FlashCam design which has been developed in view of a possible future implementation in the medium-sized telescopes of the Cherenkov Telescope Array (CTA). We report here on the results of the science verification program that has been performed after commissioning of the new camera, to show that the camera and software pipelines are working up to expectations
    corecore