247 research outputs found

    A MeerKAT, e-MERLIN, H.E.S.S. and Swift search for persistent and transient emission associated with three localised FRBs

    Get PDF

    HESS J1809-193: a halo of escaped electrons around a pulsar wind nebula?

    Full text link
    Context. HESS J1809-193 is an unassociated very-high-energy γ\gamma-ray source located on the Galactic plane. While it has been connected to the nebula of the energetic pulsar PSR J1809-1917, supernova remnants and molecular clouds present in the vicinity also constitute possible associations. Recently, the detection of γ\gamma-ray emission up to energies of \sim100 TeV with the HAWC observatory has led to renewed interest in HESS J1809-193. Aims. We aim to understand the origin of the γ\gamma-ray emission of HESS J1809-193. Methods. We analysed 93.2 h of data taken on HESS J1809-193 above 0.27 TeV with the High Energy Stereoscopic System (H.E.S.S.), using a multi-component, three-dimensional likelihood analysis. In addition, we provide a new analysis of 12.5 yr of Fermi-LAT data above 1 GeV within the region of HESS J1809-193. The obtained results are interpreted in a time-dependent modelling framework. Results. For the first time, we were able to resolve the emission detected with H.E.S.S. into two components: an extended component that exhibits a spectral cut-off at \sim13 TeV, and a compact component that is located close to PSR J1809-1917 and shows no clear spectral cut-off. The Fermi-LAT analysis also revealed extended γ\gamma-ray emission, on scales similar to that of the extended H.E.S.S. component. Conclusions. Our modelling indicates that based on its spectrum and spatial extent, the extended H.E.S.S. component is likely caused by inverse Compton emission from old electrons that form a halo around the pulsar wind nebula. The compact component could be connected to either the pulsar wind nebula or the supernova remnant and molecular clouds. Due to its comparatively steep spectrum, modelling the Fermi-LAT emission together with the H.E.S.S. components is not straightforward. (abridged)Comment: 14 pages, 10 figures. Accepted for publication in A&A. Corresponding authors: Vikas Joshi, Lars Mohrman

    Detection of extended gamma-ray emission around the Geminga pulsar with H.E.S.S

    Get PDF
    Geminga is an enigmatic radio-quiet gamma-ray pulsar located at a mere 250 pc distance from Earth. Extended very-high-energy gamma-ray emission around the pulsar was discovered by Milagro and later confirmed by HAWC, which are both water Cherenkov detector-based experiments. However, evidence for the Geminga pulsar wind nebula in gamma rays has long evaded detection by imaging atmospheric Cherenkov telescopes (IACTs) despite targeted observations. The detection of gamma-ray emission on angular scales > 2 deg poses a considerable challenge for the background estimation in IACT data analysis. With recent developments in understanding the complementary background estimation techniques of water Cherenkov and atmospheric Cherenkov instruments, the H.E.S.S. IACT array can now confirm the detection of highly extended gamma-ray emission around the Geminga pulsar with a radius of at least 3 deg in the energy range 0.5-40 TeV. We find no indications for statistically significant asymmetries or energy-dependent morphology. A flux normalisation of (2.8±0.7)×1012(2.8\pm0.7)\times10^{-12} cm2^{-2}s1^{-1}TeV1^{-1} at 1 TeV is obtained within a 1 deg radius region around the pulsar. To investigate the particle transport within the halo of energetic leptons around the pulsar, we fitted an electron diffusion model to the data. The normalisation of the diffusion coefficient obtained of D0=7.61.2+1.5×1027D_0 = 7.6^{+1.5}_{-1.2} \times 10^{27} cm2^2s1^{-1}, at an electron energy of 100 TeV, is compatible with values previously reported for the pulsar halo around Geminga, which is considerably below the Galactic average.Comment: 16 pages, 15 figures, 7 tables. Accepted for publication in Astronomy & Astrophysic

    H.E.S.S. follow-up observations of GRB221009A

    Full text link
    GRB221009A is the brightest gamma-ray burst ever detected. To probe the very-high-energy (VHE, >>\!100 GeV) emission, the High Energy Stereoscopic System (H.E.S.S.) began observations 53 hours after the triggering event, when the brightness of the moonlight no longer precluded observations. We derive differential and integral upper limits using H.E.S.S. data from the third, fourth, and ninth nights after the initial GRB detection, after applying atmospheric corrections. The combined observations yield an integral energy flux upper limit of ΦUL95%=9.7×1012 ergcm2s1\Phi_\mathrm{UL}^{95\%} = 9.7 \times 10^{-12}~\mathrm{erg\,cm^{-2}\,s^{-1}} above Ethr=650E_\mathrm{thr} = 650 GeV. The constraints derived from the H.E.S.S. observations complement the available multiwavelength data. The radio to X-ray data are consistent with synchrotron emission from a single electron population, with the peak in the SED occurring above the X-ray band. Compared to the VHE-bright GRB190829A, the upper limits for GRB221009A imply a smaller gamma-ray to X-ray flux ratio in the afterglow. Even in the absence of a detection, the H.E.S.S. upper limits thus contribute to the multiwavelength picture of GRB221009A, effectively ruling out an IC dominated scenario.Comment: 10 pages, 4 figures. Accepted for publication in APJL. Corresponding authors: J. Damascene Mbarubucyeye, H. Ashkar, S. J. Zhu, B. Reville, F. Sch\"ussle

    A deep spectromorphological study of the γ\gamma-ray emission surrounding the young massive stellar cluster Westerlund 1

    Get PDF
    Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy is a prime candidate for studying this hypothesis. While the very-high-energy γ\gamma-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. We aim to identify the physical processes responsible for the γ\gamma-ray emission around Westerlund 1 and thus to better understand the role of massive stellar clusters in the acceleration of Galactic CRs. Using 164 hours of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the γ\gamma-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. We detected large-scale (2\sim 2^\circ diameter) γ\gamma-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with γ\gamma-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and is uniform across the entire source region. We did not find a clear correlation of the γ\gamma-ray emission with gas clouds as identified through H I and CO observations. We conclude that, of the known objects within the region, only Westerlund 1 can explain the bulk of the γ\gamma-ray emission. Several CR acceleration sites and mechanisms are conceivable, and discussed in detail. (abridged)Comment: 15 pages, 9 figures. Corresponding authors: L. Mohrmann, S. Ohm, R. Rauth, A. Specoviu

    Science verification of the new FlashCam-based camera in the 28m telescope of H.E.S.S

    Get PDF
    In October 2019 the central 28m telescope of the H.E.S.S. experiment has been upgraded with a new camera. The camera is based on the FlashCam design which has been developed in view of a possible future implementation in the medium-sized telescopes of the Cherenkov Telescope Array (CTA). We report here on the results of the science verification program that has been performed after commissioning of the new camera, to show that the camera and software pipelines are working up to expectations

    Revisiting the PeVatron candidate MGRO J1908+06 with an updated H.E.S.S. analysis

    Get PDF
    Detecting and studying galactic gamma-ray sources emitting very-high energy photons sheds light on the acceleration and propagation of cosmic rays presumably created in these sources. Currently, there are few sources emitting photons with energies exceeding 100 TeV. In this work we revisit the unidentified source MGRO J1908+06, initially detected by Milagro, using an updated H.E.S.S. dataset and analysis pipeline. The vicinity of the source contains a supernova remnant and pulsars as well as molecular clouds. This makes the identification of the primary source(s) of galactic cosmic rays as well as the nature of the gamma-ray emission challenging, especially in light of the recent HAWC and LHAASO detection of the high energy tail of its spectrum. Exploiting the better angular resolution as compared to particle detectors, we investigate the morphology of the source as well as its spectral properties

    Detection of extended TeV emission around the Geminga pulsar with H.E.S.S

    Get PDF
    Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding the IACT field-of-view has proven challenging. Recent developments in analysis techniques have enabled the detection of significant emission around Geminga in archival data with H.E.S.S.. In 2019, further data on the Geminga region were obtained with an adapted observation strategy. Following the announcement of the detection of significant TeV emission around Geminga in archival data, in this contribution we present the detection in an independent dataset. New analysis results will be presented, and emphasis given to the technical challenges involved in observations of highly extended gamma-ray emission with IACTs

    H.E.S.S. follow-up of BBH merger events

    Get PDF
    We present here, follow-up observations of four Binary black hole BBH eventsperformed with the High Energy Stereoscopic System (H.E.S.S.) in the Very HighEnergy (VHE) gamma-ray domain during the second and third LIGO/Virgoobservation runs. Detailed analyses of the obtained data did not showsignificant VHE emission. We derive integral upper limit maps considering ageneric E2E^{-2} source spectrum in the most sensitive H.E.S.S energy intervalranging from 1 to 10 TeV. We also consider Extragalactic Background Lightabsorption effects and derive integral upper limits over the full accessibleenergy range. We finally derive upper limits of the VHE luminosity for eachevent and compare them with the expected VHE emission from GRBs. Thesecomparisons allow us to assess the H.E.S.S. gravitational wave follow-upstrategies. For the fourth GW observing run O4, we do not expect tofundamentally alter our observing strategy, and will continue to prioritize skycoverage like for the previous runs<br
    corecore