198 research outputs found

    Simulator sickness when performing gaze shifts within a wide field of view optic flow environment: preliminary evidence for using virtual reality in vestibular rehabilitation

    Get PDF
    BACKGROUND: Wide field of view virtual environments offer some unique features that may be beneficial for use in vestibular rehabilitation. For one, optic flow information extracted from the periphery may be critical for recalibrating the sensory processes used by people with vestibular disorders. However, wide FOV devices also have been found to result in greater simulator sickness. Before a wide FOV device can be used in a clinical setting, its safety must be demonstrated. METHODS: Symptoms of simulator sickness were recorded by 9 healthy adult subjects after they performed gaze shifting tasks to locate targets superimposed on an optic flow background. Subjects performed 8 trials of gaze shifting on each of the six separate visits. RESULTS: The incidence of symptoms of simulator sickness while subjects performed gaze shifts in an optic flow environment was lower than the average reported incidence for flight simulators. The incidence was greater during the first visit compared with subsequent visits. Furthermore, the incidence showed an increasing trend over the 8 trials. CONCLUSION: The performance of head unrestrained gaze shifts in a wide FOV optic flow environment is tolerated well by healthy subjects. This finding provides rationale for testing these environments in people with vestibular disorders, and supports the concept of using wide FOV virtual reality for vestibular rehabilitation

    IPod-based in-home system for monitoring gaze-stabilization exercise compliance of individuals with vestibular hypofunction

    Get PDF
    Background: In the physical therapy setting, physical therapists (PTs) often prescribe exercises for their clients to perform at home. However, it is difficult for PTs to obtain information about their clients' compliance with the prescribed exercises, the quality of performance and symptom magnitude. We present an iPod-based system for capturing this information from individuals with vestibular hypofunction while they perform gaze stabilization exercises at home. Method. The system's accuracy for measurement of rotational velocity against an independent motion tracker was validated. Then a seven day in-home trial was conducted with 10 individuals to assess the feasibility of implementing the system. Compliance was measured by comparing the recorded frequency and duration of the exercises with the exercise prescription. The velocity and range of motion of head movements was recorded in the pitch and yaw planes. The system also recorded dizziness severity before and after each exercise was performed. Each patient was interviewed briefly after the trial to ascertain ease of use. In addition, an interview was performed with PTs in order to assess how the information would be utilized. Results: The correlation of the velocity measurements between the iPod-based system and the motion tracker was 0.99. Half of the subjects were under-compliant with the prescribed exercises. The average head velocity during performance was 140 deg/s in the yaw plane and 101 deg/s in the pitch plane. Conclusions: The iPod-based system was able to be used in-home. Interviews with PTs suggest that the quantitative data from the system will be valuable for assisting PTs in understanding exercise performance of patients, documenting progress, making treatment decisions, and communicating patient status to other PTs. © 2014 Huang et al.; licensee BioMed Central Ltd

    Interpersonal interactions for haptic guidance during balance exercises

    Get PDF
    Background: Caregiver–patient interaction relies on interpersonal coordination during support provided by a therapist to a patient with impaired control of body balance. Research question: The purpose of this study was to investigate in a therapeutic context active and passive participant involvement during interpersonal support in balancing tasks of increasing sensorimotor difficulty. Methods: Ten older adults stood in semi-tandem stance and received support from a physical therapist (PT) in two support conditions: 1) physical support provided by the PT to the participant’s back via an instrumented handle affixed to a harness worn by the participant (“passive” interpersonal touch; IPT) or 2) support by PT and participant jointly holding a handle instrumented with a force-torque transducer while facing each other (“active” IPT). The postural stability of both support conditions was measured using the root-mean-square (RMS) of the Centre-of-Pressure velocity (RMS dCOP) in the antero-posterior (AP) and medio-lateral (ML) directions. Interpersonal postural coordination (IPC) was characterized in terms of cross-correlations between both individuals’ sway fluctuations as well as the measured interaction forces. Results: Active involvement of the participant decreased the participant’s postural variability to a greater extent, especially under challenging stance conditions, than receiving support passively. In the passive support condition, however, stronger in-phase IPC between both partners was observed in the antero-posterior direction, possibly caused by a more critical (visual or tactile) observation of participants’ body sway dynamics by the therapist. In-phase cross-correlation time lags indicated that the therapist tended to respond to participants’ body sway fluctuations in a reactive follower mode, which could indicate visual dominance affecting the therapist during the provision of haptic support. Significance: Our paradigm implies that in balance rehabilitation more partnership-based methods promote greater postural steadiness. The implications of this finding with regard to motor learning and rehabilitation need to be investigated

    Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing

    Get PDF
    This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy

    Backward walking training improves balance in school-aged boys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls remain a major cause of childhood morbidity and mortality. It is suggested that backward walking (BW) may offer some benefits especially in balance and motor control ability beyond those experienced through forward walking (FW), and may be a potential intervention for prevention of falls. The objective of this study was to investigate the effects of BW on balance in boys.</p> <p>Methods</p> <p>Sixteen healthy boys (age: 7.19 ± 0.40 y) were randomly assigned to either an experimental or a control group. The experimental group participated in a BW training program (12-week, 2 times weekly, and 25-min each time) but not the control group. Both groups had five dynamic balance assessments with a Biodex Stability System (anterior/posterior, medial/lateral, and overall balance index) before, during and after the training (week- 0, 4, 8, 12, 24). Six control and six experimental boys participated in a study comparing kinematics of lower limbs between FW and BW after the training (week-12).</p> <p>Results</p> <p>The balance of experimental group was better than that of control group after 8 weeks of training (<it>P </it>< 0.01), and was still better than that of control group (<it>P </it>< 0.05), when the BW training program had finished for 12 weeks. The kinematic analysis indicated that there was no difference between control and experimental groups in the kinematics of both FW and BW gaits after the BW training (<it>P </it>> 0.05). Compared to FW, the duration of stance phase of BW tended to be longer, while the swing phase, stride length, walking speed, and moving ranges of the thigh, calf and foot of BW decreased (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Backward walking training in school-aged boys can improve balance.</p

    Functional imaging of cognition in an old-old population: A case for portable functional near-infrared spectroscopy

    Get PDF
    In this study, functional near-infrared spectroscopy (fNIRS) was used to record brain activa- tion during cognitive testing in older individuals (88±6yo; N = 19) living in residential care communities. This population, which is often associated with loss of personal independence due to physical or cognitive decline associated with aging, is also often under-represented in neuroscience research because of a limited means to participate in studies which often take place in large urban or university centers. In this study, we demonstrate the feasibility and initial results using a portable 8-source by 4-detector fNIRS system to measure brain activity from participants within residential care community centers. Using fNIRS, brain sig- nals were recorded during a series of computerized cognitive tests, including a Symbol Digit Coding test (SDC), Stroop Test (ST), and Shifting Attention Test (SAT). The SDC and SAT elicited greater activity in the left middle frontal region of interest. Three components of the ST produced increases in the right middle frontal and superior frontal, and left superior frontal regions. An association between advanced age and increased activation in the right middle frontal region was observed during the incongruent ST. Although none of the partici- pants had clinical dementia based on the short portable mental status questionnaire, the group performance was slightly below age-normed values on these cognitive tests. These results demonstrate the capability for obtaining functional neuroimaging measures in resi- dential settings, which ultimately may aid in prognosis and care related to dementia in older adults
    corecore