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Abstract

In this study, functional near-infrared spectroscopy (fNIRS) was used to record brain activa-

tion during cognitive testing in older individuals (88±6yo; N = 19) living in residential care

communities. This population, which is often associated with loss of personal independence

due to physical or cognitive decline associated with aging, is also often under-represented

in neuroscience research because of a limited means to participate in studies which often

take place in large urban or university centers. In this study, we demonstrate the feasibility

and initial results using a portable 8-source by 4-detector fNIRS system to measure brain

activity from participants within residential care community centers. Using fNIRS, brain sig-

nals were recorded during a series of computerized cognitive tests, including a Symbol Digit

Coding test (SDC), Stroop Test (ST), and Shifting Attention Test (SAT). The SDC and SAT

elicited greater activity in the left middle frontal region of interest. Three components of the

ST produced increases in the right middle frontal and superior frontal, and left superior

frontal regions. An association between advanced age and increased activation in the right

middle frontal region was observed during the incongruent ST. Although none of the partici-

pants had clinical dementia based on the short portable mental status questionnaire, the

group performance was slightly below age-normed values on these cognitive tests. These

results demonstrate the capability for obtaining functional neuroimaging measures in resi-

dential settings, which ultimately may aid in prognosis and care related to dementia in older

adults.
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Introduction

In 2014, approximately 830,000 older adults in the US lived in a residential care community

(RCC), which is one type of long-term care facility [1]. Residential care communities serve

individuals with cognitive impairment, dementia, or Alzheimer’s disease. In 2010, about 60%

of residents had some form of cognitive impairment, consisting of 18% without dementia

and 42% with Alzheimer’s disease or other dementia [2]. These residents with cognitive

impairment had more emergency department visits, required greater assistance with activities

of daily living, greater care for urinary incontinence, and more skilled nursing care, resulting

in an additional $7,000 of care per year. The overall cost for individuals with cognitive

impairment residing in RCCs was $17 billion [2].

About 6% of RCCs are part of facilities that provide a continuum of care that include skilled

nursing, assisted living, independent, and dementia units [2]. Residents often transition from

one level of care to another depending on acute illness, cognitive status, family requests or

physician input/supervision. Consequently, characterization of the health status of individuals

living in these facilities is better-established using functional status rather than the specific set-

ting that they currently reside in. Therefore, assessment of cognitive function using simple,

portable tools may provide some benefit for facilities to provide the optimum care and manage

costs.

Assessment of cognitive function, specifically executive function, is relatively easy to per-

form using the traditional paper-and-pencil format, or newer computer-based formats [3–5].

In addition to the overall performance results that may reveal deficits in different executive

functions, it is possible that additional important information about the cognitive status may

be obtained from the functional brain activation as individuals are performing the tests [4, 6–

9]. However, research in this age group is somewhat limited by a well-acknowledged selection

bias towards individuals with the means and motivation to travel to urban and college/univer-

sity centers where the majority of research using magnetic resonance imaging (MRI) or other

neuroimaging methods are performed. Functional near-infrared spectroscopy (fNIRS) is a

non-invasive neuroimaging technology that uses low levels of red to near-infrared light (650-

900nm) to spectroscopically measure hemoglobin changes in tissue. Biological tissue has low

intrinsic absorption in this range of wavelengths, which allows light to remain detectable even

after it has passed through up to centimeters of tissue. However, in this range, tissue is highly

optically turbid, which means that the light scatters and changes directions multiple times, cre-

ating a diffuse path through the tissue along which the optical properties are examined. Func-

tional NIRS instruments record the changes in the optical absorption of the tissue along this

diffuse path, for example, due to an increase in regional blood flow, which differentially

absorbs light due to the presence of oxy- and deoxy-hemoglobin. A grid of light sources and

light detectors are used to spatially localize the change in optical frequency between each

source-to-detector measurement pair.

In an fNIRS study, the participant wears a head cap embedded with light sources and detec-

tors positioned over the specific part of the brain under investigation. During cognitive perfor-

mance, regional neural activity causes a change in the blood flow, volume, and oxygenation of

the brain through mechanisms of neural-vascular and neural-metabolic coupling. The fNIRS

source-detector pairs measure the light transmitted through the region of interest and infer

brain activity via statistical analysis of the evoked changes in oxy- and deoxy-hemoglobin con-

centration. The depth of penetration into the brain is limited to the outer the cortex of the

brain, depending on the source-detector spacing [10]. Although this is more superficial than

other modalities such as functional magnetic resonance imaging (fMRI), this still allows for

measurements from most cognitive regions of the cortex. Previously, fNIRS has been used to

FNIRS in older adults living in residential care communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0184918 October 12, 2017 2 / 17

https://doi.org/10.1371/journal.pone.0184918


investigate a variety of cognitive tasks [11–16](reviewed in [17]) and has particular utility in

child populations where more traditional MRI methods are difficult (reviewed in [18]). Conse-

quently, the use of fNIRS for investigating cognitive function in a setting outside of the labora-

tory, such as in RCCs, may be a useful application. A limitation of fNIRS in this context,

however, is that because these measurements are recorded from sensors placed on the surface

of the scalp, the sensitivity to specific brain regions depends on individual variation in the

anatomy of the head and is therefore affected by factors such as atrophy and head size.

In this study, we used portable fNIRS to measure brain activation during cognitive tasks in

older adults (65 or older) living in RCCs. The purpose of this study is to establish the viability

of using a portable fNIRS device in populations that otherwise have barriers to participating in

typical brain imaging studies. Specifically, subjects living in RCCs are under-represented due

to limitations in access to studies that use scanners that are fixed in a location (e.g. MRI, PET,

MEG). In order for very old subjects to participate in traditional brain imaging studies, they

need to be able to get to and from the scanner facilities. Thus, subjects over 65 that do partici-

pate in these studies tend to be healthier and in a higher socioeconomic status than the repre-

sentative population. This paper focuses on our methods for portable fNIRS data collection

and analysis. We hypothesized that, by using well-established tests of cognition, we would be

able to find a significant result of activation, thus indicating that portable fNIRS is a worth-

while method of recording brain activation in the very old.

Materials and methods

Subject population

Participants were independently living in long-term care facilities, specifically RCCs, defined

as facilities that provide room, board with at least two meals a day, and help with personal care

such as bathing and dressing or health-related services, such as medication management [1].

Nineteen participants (13 F, 88.1 ± 6.0 years) were enrolled in this research study. All subjects

were recruited using a convenience sample of older adults living in three RCC facilities, who

were already enrolled in a research study investigating the mobility and gait function of resi-

dents in RCC settings [19]. The study was approved by the Institutional Review Board of the

University of Pittsburgh. The study included individuals who were aged 65 years or older and

cognitively able to provide informed consent, initially based on reports from resident staff and

later confirmed with the Short Portable Mental Status Questionnaire [20]. Gait speed was mea-

sured as the average of two 4-meter self-paced walks. Because this study was part of a larger

one that investigated balance and strength in this population, individuals were excluded if they

were not able to ambulate for 1 minute (assistive devices were allowed), or had any medical or

neurological condition that prevented them from performing maximal muscle action. The

medical history was assessed using an 18-item comorbidity index and number of prescription

medications used, but these were not used in analysis since the initial goal of this study was to

show pilot feasibility of the use of fNIRS in this population (Table 1).

Instrumentation

A portable 4 source x 4 detector fNIRS system (NIRS-2, TechEn Inc, Milford MA USA; Fig

1A) was used in this study. This instrument used four laser diode sources at 808nm and four

avalanche photodiode detectors. We used 808nm as this is an isobestic point of hemoglobin,

where both oxygenated and deoxygenated forms absorb light similarly. At this wavelength,

fNIRS measurements of tissue optical absorption between pairs of source and detector posi-

tions reflect underlying changes in total-hemoglobin as an analog of cerebral blood volume.

Although fNIRS is typically recorded at two wavelengths in order to distinguish changes in the
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Table 1. Indicators of health status, including number of comorbidities, number of prescription medications, and cognitive function (Short Porta-

ble Mental Status Questionnaire, SPMSQ).

Subject Number Comorbidities (n) Medications (n) SPMSQ (total errors)

1 8 2 1

2 3 5 0

3 8 9 0

7 13 14 1

9 8 9 1

12 6 3 2

13 4 5 1

17 11 6 1

19 4 5 0

21 5 4 0

24 8 3 2

25 9 3 0

26 8 5 0

27 10 11 0

31 7 9 2

51 5 10 1

53 8 10 1

56 7 14 0

65 6 9 2

Any SPMSQ score 2 or below indicates normal cognitive functioning.

https://doi.org/10.1371/journal.pone.0184918.t001

Fig 1. Functional NIRS setup. The photograph (1A) shows the TechEn NIRS-2 instrument, which was connected via fiber optic cables to the fNIRS head

probe. The registered location of the fNIRS head probe is shown (1B) and consisted of 8 source and 4 detector positions (32mm separation) positioned

bilaterally across the forehead.

https://doi.org/10.1371/journal.pone.0184918.g001
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oxygenated and deoxygenated forms of hemoglobin, the use of the single isobestic measure-

ment in this study allowed us to double the number of spatial positions on the head and was a

compromise given the portability constraints of this field study. A limitation of this, however,

is that our study is limited to reporting values proportional to total-hemoglobin changes.

The fNIRS instrument used fiber optic cables to transmit light to and from the instrument

and a sensor probe placed on the participant’s forehead. In order to further increase the spatial

sampling, bifurcated source fibers which send a single instrument laser light concurrently to

both sides of the head were used to double the number of source positions on the head allow-

ing for a total of eight source positions (four per hemisphere; see S1and S2 Figs). A total of

four detector positions (two per hemisphere) collect the light as it exits the tissue in order to

record the changes in the optical absorption between source-to-detector pairs. By making

these modifications to the standard 4x4 NIRS-2 instrument, we were able to record a total of

10 source-to-detector pairs on the head. Functional NIRS signals were sampled at 200 Hz and

then Nyquist filtered and resampled to 20 Hz prior to analysis. The fiber optics were arranged

on the forehead as shown in Fig 1B with a source-detector separation of 32 mm. A 32mm sepa-

ration was used based on empirical experience from previous studies and is a compromise

between depth of penetration and signal-to-noise of the measurements. In order to align the

fNIRS cap, the center of the cap was adjusted to the 10–20 point FpZ, which was used for regis-

tration of the fNIRS head cap. The positions of the fNIRS sensors were then estimated relative

to this point on the Colin27 atlas head [21] using custom Matlab code. The position of the

fNIRS measurements (mid-point between the source-detector pair) relative to this atlas was

presented in Table 2. In this study, this registration to an atlas was used for the definitions of

approximate regions-of-interest in the analysis (see S2 Fig). Since individual anatomical infor-

mation (e.g. structural MRI) was not available for any of the subjects, variability in head and

brain anatomy is expected to contribute to underestimation of the statistical effect size of brain

responses. Likewise, systematic differences in anatomy (e.g. correlation between cortical atro-

phy and age) would introduce bias in the fNIRS results since the sensitivity to the brain would

fall exponentially as the scalp-to-brain distance increased.

Experimental design

Functional NIRS testing was performed in an unoccupied living suite, similar to the suite in

which the participants resided. Brain imaging was done while participants performed three

cognitive tests as part of the computer-administered CNS Vital Signs (Morrisville, NC) test.

Specifically, the Symbol Digit Coding test, Stroop Test, and the Shifting Attention Test were

performed in fixed order. The tests were carried out using a laptop computer under standard

Table 2. Location of NIRS sensors based on registration to the Colin-27 atlas.

fNIRS channel Nearest region of interest

Source 1: Detector 1 Right Middle Frontal BA-46

Source 2: Detector 1 Right Middle Frontal BA-46

Source 3: Detector 1 Right Superior Frontal BA-45

Source 3: Detector 2 Right Superior Frontal BA-10

Source 4: Detector 2 Right Superior Frontal BA-10

Source 5: Detector 3 Left Superior Frontal BA-10

Source 6: Detector 3 Left Superior Frontal BA-10

Source 6: Detector 4 Left Superior Frontal BA-45

Source 7: Detector 4 Left Middle Frontal BA-46

Source 8: Detector 4 Left Middle Frontal BA-46

https://doi.org/10.1371/journal.pone.0184918.t002
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procedures recommended by the manufacturer, using a custom color-coded keyboard pro-

vided by the manufacturer. Prior to each test, the subject performed a brief trial of the test so

that understanding of the procedures could be confirmed. Before and after each test, 30 sec-

onds of baseline fNIRS measurements were recorded while the subject sat quietly.

Symbol Digit Coding (SDC). This test measures the speed with which subjects can men-

tally transform one symbol into another based on a given code. A code table is presented at the

top of a monitor in which eight different symbols are arranged in a row. Beneath each symbol

in the code table is a different digit [2–9]. Below the code table are rows of double boxes. In the

top of each double box is a symbol while the bottom box is empty. The subject types in the

appropriate digit under each code, and completes as many boxes as possible within 120s [22].

The number completed successfully is the outcome measure, which is then percentile scaled

based on age-normed performance.

Stroop Test (ST). The ST has three parts. In the first part, which is a simple reaction time

(SRT) task, the words RED, YELLOW, BLUE, and GREEN (printed in black) appear at ran-

dom on the screen, and the participant presses the space bar as soon as he/she sees the word

(Stroop SRT, 30 s duration). In the second part, the words RED, YELLOW, BLUE, and

GREEN appear on the screen, printed in different colors. The participant presses the space bar

when the color of the word matches what the word says (Stroop Congruent, 45s duration). In

the third part, the words RED, YELLOW, BLUE, and GREEN appear on the screen in different

colors, as before. This time, the participant presses the space bar when the color of the word

does not match what the word says (Stroop Incongruent, 90s duration) [22]. The reaction

times from each subtest were used as outcomes, and percentile based on normed performance.

Shifting Attention Test (SAT). The SAT test is a measure of ability to shift from one

instruction set to another quickly and accurately. Participants are instructed to match geomet-

ric objects either by shape or by color. Three figures appear on the screen, one on top and two

on the bottom. The top figure is either a square or a circle, in either red or blue color. The

shape and color are randomly selected. The bottom figures are a square and a circle presented

side-by-side in either red or blue, so that both shapes and colors are presented (e.g. a red

square is paired with a blue circle). The matching rule is displayed above the top figure (i.e.

“Match SHAPE”, “Match COLOR”). The participant matches one of the bottom figures to the

top figure based on the rule by pressing the left or right shift key. The rule is randomly selected

[22]. This test lasted for approximately 90s. The raw and percentile reaction time and number

correct were used as outcomes of this test and are normative for age.

Analysis methods

Functional NIRS data was analyzed using a general linear model to detect measurement chan-

nels that were statistically related to the timing of the stimulus events. In brief, the fNIRS raw

signals (light transmitted between each source-to-detector pair) were converted to a measure

of the change in optical absorption over time for each pair. At the 808 nm wavelength, this

measurement is proportional to total-hemoglobin changes. The time course for each pair per

scan was then analyzed using a general linear regression model based on the stimulus presenta-

tion timing, which was used to test if the signal during the task periods was statistically differ-

ent from that of the baseline rest periods. Since data was analyzed as a block-design, missed or

incorrect individual trials were not excluded. The details of the analysis are presented in S1

Text (also see [23] for review). In brief, we used an autoregressive-whitened robust regression

solution to the regression model as detailed in Barker et al. [24]. The significance of changes in

brain activity (total-hemoglobin) was tested using a t-test on the regression coefficients for

each model. Following analysis of the general linear model for each scan, a mixed effects group
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level model was used to examine both the average group responses and covariate analysis with

age and gait speed. Gait speed was used as a covariate as it has been shown to be a predictor for

risk of falls and general health [25, 26]. Subject number and gender were controlled as random

variables in the model. All statistical results are shown as a Benjamini-Hochberg false-discov-

ery rate corrected p-value (denoted q-value) [27], accounting for all task comparisons and

fNIRS channels. All first and second level statistical analysis was done in Matlab using an

open-source custom analysis toolbox written by the authors [23] (see S1 Text). For each esti-

mate, a power analysis was also performed and reported on a per channel and condition basis

since in an fNIRS study, the signal-to-noise level of measurements varies depending on the

coupling of the fibers and the scalp and according to the presence of hair under the probe. The

power of each statistical test was computed based on the probability that the minimum detect-

able change needed to reject the null hypothesis exceeded the measurement noise (see [28]).

Finally, the fNIRS head cap was registered to a functionally labeled atlas brain to define

regions of interest from Brodmann area 45 and 46 (superior frontal cortex) and area 10 (mid-

dle frontal cortex) on both hemispheres (see Table 2, S1 Table and S2 Fig). The t-statistic con-

trast from each region-of-interest was computed from a weighted contribution of each

channel and the full (channel by channel) covariance matrix. Further details on the analysis

methods used in this study can be found in S1 Text. Based on the registration, the fNIRS probe

was located overlying the middle frontal and superior frontal gyrus regions (Fig 1A) based on

the statistical parametric mapping (SPM) automatic anatomical labeling (AAL2) database [29].

(Table 2).

Results

Behavioral performance

Cognitive test performance for the subject cohort, including raw scores and percentiles relative

to a normative population, are shown in Table 3. Subjects demonstrated the expected increases

in reaction time as the Stroop Task requirements became more complex. The percentiles reveal

that the subject sample performed slightly below age-normed values, and that about 5–8 sub-

jects performed well below average, based on a percentile of less than 25.

Table 3. Cognitive test performance.

Task n Mean (sd)

Raw

Mean (sd)

Percentile

Number of subjects below 25%

Symbol Digit Coding (SDC)

Number Correct

18 28 (12) 53 (33) 5

Stroop (ST-SRT)

Simple Reaction Time (ms)

19 466 (180) 46 (29) 5

Stroop (ST-CONG)

Congruent Reaction Time (ms)

19 877 (196) 40 (36) 7

Stroop (ST-INCONG)

Incongruent Reaction Time (ms)

19 1017 (195) 39 (36) 8

Shifting Attention Test (SAT)

Number Correct

17 27 (13) 35 (31) 8

Shifting Attention Test (SAT)

Reaction Time (ms)

17 1360 (175) 40 (26) 4

SDC, Symbol Digit Coding; SAT, Shifting Attention Test; ST, Stroop Test; SRT, Simple Reaction Time; CONG, Congruent; INCONG, Incongruent. For

outcome measures, a greater number correct, and smaller reaction time indicates better performance. Greater percentile values always indicate better

performance

https://doi.org/10.1371/journal.pone.0184918.t003
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fNIRS activation

The fNIRS activation maps for the SDC and SAT tasks relative to the seated rest baseline are

shown in Fig 2 (T-scores and q-values listed in Table 4). The SDC task showed increased acti-

vation (q<0.05) on the left hemisphere in channels S5-D3 (BA-10) and S6-D4 (BA-45). In

region-of-interest analysis, the left BA-10 was significantly activated (T = 2.81; q = 0.042;

Table 5) for the SDC task.

In contrast, the SAT showed bilateral activity (Fig 2). Increases in activation were observed

for channels S5-D3 (left BA-10), S6-D3 (left BA-10), and S6-D4 (left BA-45) on the left side.

Channel S3-D1 (right BA-45) on the right hemisphere was also activated. In region-of-interest

analysis, only the left BA-10 region met statistical significance (T = 3.09; q = 0.035; Table 5).

Fig 3 shows the fNIRS brain activity maps for the three variations of the Stroop task. The

values of the effects for all significant channels (q<0.05) are provided in Table 4. Bilateral

increased activation of channels S1-D1 (right BA-46), S3-D1 (right BA-45) and S5-D3 (left

BA-10) occurred in all three Stroop tasks. Channel S6-D4 (left BA-45) was more active in the

Stroop simple reaction time task and congruent task compared to baseline, but not the incon-

gruent task. Channel S8-D4 (Left BA-46) was only active during the Stroop congruent task,

and channel S3-D2 (Right BA-10) was only active in the incongruent task.

The regions of interest analysis demonstrated that the left BA-10 and right BA-45/46 was

activated in all conditions of the Stroop task (Table 5). The left BA-10 was active in the Stroop

simple, congruent and incongruent tasks, while the left BA-45 and left BA-46 were active in

the simple and congruent tasks. Fig 4 shows the activation map of the Stroop Incongruent ver-

sus Stroop Congruent task as described in the main text. Greater total-hemoglobin activation

was observed in the right middle frontal region (BA-46).

The correlation of brain activity with both age and gait speed was also examined using the

group-level mixed effects model (see S1 Text). The average gait speed for the population was

0.74 m/s (SD 0.26 m/s; range = [0.38–1.20m/s]). No brain regions or tasks were found to

Fig 2. Functional NIRS activation (SDC and SAT). Functional NIRS brain activity maps (total-hemoglobin) for the Symbol Digit Coding test

and Shifting Attention Task. The color of the channel/line indicates the T-statistic according to the color bar (right) with solid lines showing

channels significant at a false-discovery rate of q<0.05 corrected for all task comparisons.

https://doi.org/10.1371/journal.pone.0184918.g002
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correlate with the gait speed. For age, we found that only in channel S3-D2 (right superior

frontal; BA-10) the ST-INCONG was positively associated with age (T = 2.83; q = 0.045;

shown in Fig 5). This region-of-interest was correlated (T = 2.13; p = 0.03; q = 0.17) for this

same task and also for the ST-CONG task (T = 1.93; p = 0.05; q = 0.23). There was a positive

association in this region with the SDC (T = 1.85; p = 0.06; q = 0.24) and negatively with the

SAT (T = -1.78; p = 0.064; q = 0.25). None of these regions passed false discovery corrections.

Discussion

The primary findings of this study indicated increased activation above baseline for channels

overlying the left BA-10 region-of-interest (ROI) during the Symbol Digit Coding test and

Shifting Attention Test. During all versions of the Stroop test, increased activity was observed

in the channels above the right BA-10 and BA-45 and left BA-10 ROIs.

Behavioral performance

With mean values within 5% of age-normed reference values, the group performance on the

SDC and Stroop SRT reflected that the cognitive processing time and visuomotor reaction

times of this sample to be representative of the general population. However, the sample lagged

behind their age cohort in performance of the Stroop congruent and incongruent tests and the

SAT, demonstrated by the lower mean values (40th, 39th, and 35th percentile, respectively) rel-

ative to their peers. Furthermore, a larger percentage of subjects had scores below the 25th per-

centile. These tests assess additional executive functions including sustained and selective

attention, inhibition, and set shifting. The relatively lower performance of this group,

Table 4. Functional NIRS source-detector channels showing significant increases in total hemoglobin concentration compared with the baseline

rest condition.

fNIRS Channel Nearest ROI Contrast β [μM] StdErr-β T-statistic p-value q-value power

Source 5: Detector 3 Left Superior Frontal BA-10 Symbol Digit Coding SDC 0.67 0.17 3.89 1.1 x 10−4 2.2 x 10−3 0.57

Source 6: Detector 4 Left Superior Frontal BA-45 Symbol Digit Coding SDC 0.43 0.10 4.25 2.4 x 10−5 8.6 x 10−4 0.57

Source 3: Detector 1 Right Superior Frontal BA-45 Shifting Attention Task SAT 0.37 0.12 3.20 1.4 x 10−3 1.6 x 10−2 0.58

Source 5: Detector 3 Left Superior Frontal BA-10 Shifting Attention Task SAT 0.71 0.17 4.08 4.9 x 10−5 1.1 x 10−3 0.57

Source 6: Detector 3 Left Superior Frontal BA-10 Shifting Attention Task SAT 0.25 0.08 3.19 1.5 x 10−3 1.6 x 10−2 0.59

Source 6: Detector 4 Left Superior Frontal BA-45 Shifting Attention Task SAT 0.38 0.09 4.09 4.7 x 10−5 1.1 x 10−3 0.57

Source 3: Detector 1 Right Superior Frontal BA-45 Simple Reaction Time ST-SRT 0.38 0.09 4.13 3.9 x 10−5 1.1 x 10−3 0.57

Source 1: Detector 1 Right Middle Frontal BA-46 Simple Reaction Time ST-SRT 0.28 0.08 3.46 5.6 x 10−4 7.6 x 10−3 0.58

Source 5: Detector 3 Left Superior Frontal BA-10 Simple Reaction Time ST-SRT 0.40 0.13 3.17 1.6 x 10−3 1.6 x 10−2 0.59

Source 6: Detector 4 Left Superior Frontal BA-45 Simple Reaction Time ST-SRT 0.34 0.10 3.45 5.8 x 10−4 7.6 x 10−3 0.58

Source 3: Detector 1 Right Superior Frontal BA-45 Stroop Congruent ST-CONG 0.28 0.07 3.75 1.9 x 10−4 3.5 x 10−3 0.57

Source 1: Detector 1 Right Middle Frontal BA-46 Stroop Congruent ST-CONG 0.21 0.07 2.79 5.4 x 10−3 5.0 x 10−2 0.59

Source 5: Detector 3 Left Superior Frontal BA-10 Stroop Congruent ST-CONG 0.43 0.12 3.70 2.3 x 10−4 3.8 x 10−3 0.57

Source 6: Detector 4 Left Superior Frontal BA-45 Stroop Congruent ST-CONG 0.32 0.09 3.39 7.3 x 10−4 8.8 x 10−3 0.58

Source 8: Detector 4 Left Middle Frontal BA-46 Stroop Congruent ST-CONG 0.16 0.04 3.68 2.5 x 10−4 3.8 x 10−3 0.57

Source 3: Detector 2 Right Superior Frontal BA-10 Stroop Incongruent ST-INCONG 0.39 0.09 4.59 5.1 x 10−6 2.3 x 10−4 0.56

Source 3: Detector 1 Right Superior Frontal BA-45 Stroop Incongruent ST-INCONG 0.47 0.10 4.62 4.5 x 10−6 2.3 x 10−4 0.56

Source 1: Detector 1 Right Middle Frontal BA-46 Stroop Incongruent ST-INCONG 0.44 0.09 4.99 7.3 x 10−7 1.3 x 10−4 0.56

Source 5: Detector 3 Left Superior Frontal BA-10 Stroop Incongruent ST-INCONG 0.53 0.12 4.61 4.7 x 10−6 2.3 x 10−4 0.56

Source 3: Detector 1 Right Superior Frontal BA-45 Stroop Incongruent: Age ST-INCONG:Age 0.61 0.21 2.83 4.7 x 10−3 4.5 x 10−2 0.59

BA, Brodmann Area; SDC, Symbol Digit Coding; SAT, Shifting Attention Test; ST, Stroop Test, SRT, Simple Reaction Time; CONG,. Congruent; INCONG,

Incongruent. Only channels meeting false-discovery corrections of q<0.05 are shown. The type-II error power (1-β) is given which was computed for each

channel and statistical test.

https://doi.org/10.1371/journal.pone.0184918.t004
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Table 5. Regions-of-interest (ROI) with significant increases in total hemoglobin concentration compared with the baseline rest condition.

ROI Contrast β [μM] StdErr-β T-statistic p-value q-value power

BA-10 Right Symbol Digit Coding SDC 0.76 0.26 2.94 3.32 x 10−3 1.86 x 10−2 0.59

BA-45 Left Symbol Digit Coding SDC 0.69 0.23 2.97 3.06 x 10−3 1.86 x 10−2 0.59

BA-46 Left Symbol Digit Coding SDC 0.74 0.24 3.01 2.64 x 10−3 1.84 x 10−2 0.59

BA-10 Left Shifting Attention Task SAT 0.96 0.34 2.83 4.74 x 10−3 1.89 x 10−2 0.59

BA-46 Left Shifting Attention Task SAT 1.06 0.31 3.42 6.54 x 10−4 6.09 x 10−3 0.58

BA-10 Left Simple Reaction Time ST-SRT 0.72 0.27 2.64 8.50 x 10−3 3.24 x 10−2 0.60

BA-45 Left Simple Reaction Time ST-SRT 0.68 0.24 2.85 4.43 x 10−3 1.89 x 10−2 0.59

BA-46 Left Simple Reaction Time ST-SRT 0.93 0.26 3.55 3.99 x 10−4 4.77 x 10−3 0.57

BA-45 Right Simple Reaction Time ST-SRT 0.90 0.25 3.59 3.39 x 10−4 4.77 x 10−3 0.57

BA-46 Right Simple Reaction Time ST-SRT 0.85 0.24 3.58 3.65 x 10−4 4.77 x 10−3 0.57

BA-45 Left Simple Reaction Time * Gait ST-SRT:Gait 2.29 0.79 2.91 3.70 x 10−3 1.86 x 10−2 0.59

BA-46 Left Simple Reaction Time * Gait ST-SRT:Gait 2.37 0.82 2.88 4.00 x 10−3 1.86 x 10−2 0.59

BA-10 Left Stroop Congruent ST-CONG 0.69 0.27 2.55 1.09 x 10−2 3.96 x 10−2 0.60

BA-45 Left Stroop Congruent ST-CONG 0.84 0.26 3.24 1.24 x 10−3 9.48 x 10−3 0.58

BA-46 Left Stroop Congruent ST-CONG 0.82 0.24 3.45 5.76 x 10−4 6.03 x 10−3 0.58

BA-10 Right Stroop Congruent ST-CONG 0.63 0.22 2.90 3.80 x 10−3 1.86 x 10−2 0.59

BA-45 Right Stroop Congruent ST-CONG 0.83 0.25 3.36 7.92 x 10−4 6.64 x 10−3 0.58

BA-46 Right Stroop Congruent ST-CONG 0.94 0.24 3.95 8.30 x 10–5 2.48 x 10−3 0.57

BA-10 Left Stroop Incongruent ST-INCONG 0.78 0.28 2.84 4.61 x 10−3 1.89 x 10−2 0.59

BA-10 Right Stroop Incongruent ST-INCONG 1.05 0.27 3.93 8.87 x 10–5 2.48 x 10−3 0.57

BA-45 Right Stroop Incongruent ST-INCONG 0.79 0.22 3.58 3.59 x 10−4 4.77 x 10−3 0.57

BA, Brodmann Area; SDC, Symbol Digit Coding; SAT, Shifting Attention Test; ST, Stroop Test, SRT, Simple Reaction Time; CONG,. Congruent; INCONG,

Incongruent. Regions-of-interest analysis (see S1 Text, S1 Fig) showing significant activations at a false-discovery rate of q<0.05. The left/right Brodmann

areas (BA-) 10, 45, and 46 were examined as the six regions in the analysis. Only regions showing statistical changes are reported. The type-II error power

(1-β) is given which was computed for each channel and statistical test.

https://doi.org/10.1371/journal.pone.0184918.t005

Fig 3. Functional NIRS activation (STROOP tasks). FNIRS brain activity maps (total-hemoglobin) for the A) Simple reaction time task (ST-SRT), B)

congruent Stroop (ST-CONG) and C) incongruent Stroop (ST-INCONG) tasks. The color of the channel/line indicates the T-statistic according to the color

bar (right) with solid lines showing channels significant at a false-discovery rate of q<0.05 corrected for all task comparisons.

https://doi.org/10.1371/journal.pone.0184918.g003
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compared with peer-performance, probably reflects the greater prevalence of cognitive

impairment in residents of residential care communities compared with older adults living in

the community [2], and may portend a need for greater assistance with activities that require

these complex executive functions.

Assessment of cognitive function in older adults using computer-based assessment has

been investigated previously. The American Psychological Association acknowledged the

potential benefit of administering technology based assessments for individuals of limited

mobility, while recognizing potential limitations for older adults who do not routinely use

computers [30]. Espeland [4] reported higher rates of incomplete data as subjects became

older, or had less experience with computers. Therefore, it is possible that some residents of

RCCs may not be able to perform a computer-based assessment if they have some cognitive

impairment. In our experience, only a few of the subjects had initial difficulty performing the

test on the laptop. This low rate of difficulty may have been assisted by use of a custom key-

board with color-coded keys provided by the test manufacturer.

fNIRS activation

The primary function attributed to the SDC test is processing speed, but it also draws upon

visual processing abilities and presumably some level of sustained attention must be used to

complete the task over 90sec. Of the three tests, the SDC test elicited increased activation in

the least amount of channels, and only in the left hemisphere (specifically left BA-10 and BA-

Fig 4. Functional NIRS activation (STROOP Incongruent verses Congruent). Functional NIRS brain

activity maps (total-hemoglobin) for the incongruent Stroop (ST-INCONG) versus the congruent Stroop

(ST-CONG) tasks. The color of the channel/line indicates the T-statistic according to the color bar (right) with

solid lines showing channels significant at a false-discovery rate of q<0.05 corrected for all task comparisons

and fNIRS channels examined in this work.

https://doi.org/10.1371/journal.pone.0184918.g004
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45). In contrast, a synthesis of the neuroimaging literature reported that, in young adults, the

right BA-10 and BA-46 Brodmann areas are active during sustained attention tasks and that

the right BA-10 is active during visual perception of objects [31]. However, older adults more

frequently display more diffuse activation, which could explain the left-sided activation in this

study [6]. Additionally, Rosano et al. [9] previously discovered an association between greater

activation in the left dorsolateral prefrontal cortex and improved digit symbol substitution test

performance in active older adults compared with sedentary older adults.

The SAT elicited activity in similar regions and further recruited a channel over the right

BA-45. However, the left BA-10 was the only region to survive the region of interest analysis.

The primary ability tested with the SAT is set shifting, or the ability to alter responses based on

changing rules. Other common ways to assess this function include the Trail Making B Test or

the Wisconsin Card Sorting Test. A review of functional imaging studies examining activation

during the Wisconsin Card Sorting Test in young adults has demonstrated predominantly left

hemisphere activation in BA-45, right activation in BA-10, and bilateral activation in BA-46

[32–34]. During both written and computerized versions of the Trail Making Test, increased

activity has been documented in the prefrontal cortex bilaterally using fNIRS [12, 15], to a

greater degree anteriorly than laterally [12]. Consequently, our findings in older adults resid-

ing in residential care communities generally replicate the results observed in young adults,

although one may have expected stronger bilateral activation in the current study.

The ST had the greatest frequency of channels that produced significantly increased activa-

tion. Our findings of increased activation bilaterally in BA-10 during the simple, congruent

and incongruent test components and greater activation in right BA-45 corroborate numerous

previous findings of increased activity in the inferior and superior frontal gyri [7, 8, 11, 14].

We specifically found that the right BA-10 is significantly activated more during the incongru-

ent compared to the congruent condition. Several reports have suggested that aging plays a

role in how the brain performs the task. We found that the right BA-45 was associated with

Fig 5. Age-related functional NIRS activation (STROOP-AGE). The activation of the incongruent Stroop test (ST-INCONG) was positively associated

with participant age in the right superior-frontal region) in the mixed effects model (see S1 Text). The panel (right) shows a scatter plot of the weighted

adjusted beta’s from the first-level (single subject) general linear models versus the participant age.

https://doi.org/10.1371/journal.pone.0184918.g005
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age. For instance, several studies have documented increased activation in older adults com-

pared with young adults during Stroop performance [7, 35], consistent with the generalized

increased activation theories [6]. An important contribution of future work will be the investi-

gation of how performance during the Stroop test is related to brain activation in a larger sam-

ple of older adults, some of who demonstrate mild cognitive impairment.

The findings of increased total hemoglobin concentration during cognitive test perfor-

mance build upon previous fNIRS investigations, particularly with respect to tasks that

increase working memory. In these studies, older and young adults have demonstrated greater

oxyhemoglobin concentration with greater working memory load, and greater bilateral activa-

tion in older adults [36]. In addition, a larger decline in performance as the working memory

load increased resulted in greater bilateral activation [37]. However, individuals with mild

cognitive impairment may produce decreased oxyhemoglobin concentrations. [38, 39] Thus it

appears that using portable cognitive testing and neuroimaging methods such as fNIRS may

help to document evolving cognitive impairments in at-risk populations living in the

community.

Limitations of this study

One of the limitations of fNIRS is that it only measures functional changes in brain activity

and does not provide any structural information about the brain. In this study, we used the

Colin27 atlas for registration and the definition of regions-of-interest. Because fNIRS mea-

sures brain signals by sending light in from the surface of the scalp, these signals are sensitive

to changes and variability in the cortical depth of the brain region from the scalp as well as

extra-cerebral factors like skin, fat, skull, and cerebral spinal fluid thicknesses. In particular,

in an aging population, brain atrophy will cause this cortical depth to increase, thereby lower-

ing the sensitivity of the fNIRS to this brain region and resulting in age-related decreases in

the reported brain activity by fNIRS. In our results, we saw an increase in the brain activity

for the incongruent Stroop task with increasing age; however, this effect could be underesti-

mated if there was additional atrophy affecting these measurements. The potential for sys-

tematic biases based on atrophy or other anatomical differences between populations must

be considered further when looking at population differences (e.g. brain activity of younger

versus older subject groups). Further, fNIRS is limited to cortical measurements within the

regions that are covered by the probe used (bilateral BA-10, 45, and 46 were covered). There-

fore, no information about brain activity in regions outside of this probe volume is available

and we cannot comment on the possibility of recruitment of other brain regions, which were

not measured in this age group. Based on analysis of this data, we found most of our statisti-

cal tests to be powered around 60% with N = 19 participants in this pilot study. In future

studies, to obtain 80% power, a sample size of at least 32 participants would be needed (or

more if additional covariates are considered), which we view as reasonable for recruitment

purposes.

As a further limitation, the measurements made here were performed using an 808nm

source and thus measure total hemoglobin compared to the standard in fNIRS, which mea-

sures both oxy- and deoxy-hemoglobin. In this study, the 808 wavelength had been used in

order to double the number of source positions available using our TechEN NIRS-2 system,

which is limited to a total of four laser diode slots. By using a 4x1 [wavelength] setup instead of

the usual 2x2, we were able to measure more brain regions. In future work, newly availability

portable systems with a larger number of light sources and detectors could be used to further

extend these measurements as well as offer the ability to measure both oxy- and deoxy-

hemologbin.
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Future directions

This is one of the first studies to use portable fNIRS brain imaging technology to look at brain

activity signals in an older population living in residential care communities. Specifically, this

work demonstrates the utility of fNIRS to access this under-studied population using instru-

ments that were brought directly into the resident’s home. The current study used a relatively

small set of channels, thus limiting our ability to determine if the changes in brain activation

were specific to the frontal region covered by our probe, or was more widespread. In the

future, higher-density optode arrays with greater coverage will allow us to more precisely

locate the changes in brain activation during these tasks. As the fNIRS technology becomes

more widely available and portable, and if longitudinal studies determine that the outcomes

have some ability for predicting future changes in health status, the findings may hold promise

for managing care of the residents. Our results suggest that using fNIRS during performance

of a computerized Stroop test would elicit the greatest activation, and be a starting point for

examining changes in status. However, it would also be important to relate the activation

changes to test performance, which we were not able to do in this study.

Supporting information

S1 Fig. Schematic of fNIRS measurement configuration. Schematic of the fiber bifurcations

used to sample eight total source positions on the head cap using only the four lasers available

on the NIRS instrument. The fNIRS data was collected using a TechEn NIRS-2 system, which

has a total of 4 lasers (customized to all be at 808nm) and 4 detector positions. We used bifur-

cated fiber optics on the lasers to send each of these four lasers to two separate positions on the

head, thereby doubling the number of concurrent measurements. The same laser was sent to

opposite hemispheres and a staggered positioning to ensure that the light from each position

could be uniquely identified.

(DOCX)

S2 Fig. Location of brain regions-of-interest. The fNIRS probe was registered to the Colin27

atlas, which was used in combination with the automatic anatomical labeling toolbox (aal2) to

label the Brodmann areas 10, 45, and 46. The images above show topology maps (Clarke azi-

muthal map projection) showing the depth of the nearest cortical point in the region-of-inter-

est to the surface of the head. A yellow indicates a depth of greater then 30mm, which would

be inaccessible to fNIRS.

(DOCX)

S1 Table. Spatial weights of regions-of-interest. Contrast weights used for definition of the

six regions-of-interest based on the relative sensitivity of each channel to the region derived

from the optical forward model.

(DOCX)

S1 Text. Analysis of NIRS data.

(DOCX)
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