74 research outputs found

    Substrate utilization in skeletal muscle and adipose tissue

    Get PDF
    Obesity and Type 2 diabetes are associated with high fat diet (HFD), reduced mitochondrial mass and function and insulin resistance as characterized by glucose disposal and relative to body fatness. We hypothesized that (a) HFD affects expression of genes involved in mitochondrial biogenesis and function, (b) carbohydrate metabolism and storage is under transcriptional control and (c) both overall fatness and characteristics of adipose tissue influence the interplay between free fatty acids (FFAs) and insulin-stimulated glucose disposal. To test hypotheses “a” and “b”, we fed 10 insulin-sensitive males an isoenergetic HFD for 3 days with muscle biopsies before and after intervention. Oligonucleotide microarrays revealed 370 genes differentially regulated in response to HFD (Bonferonni adjusted p \u3c 0.001). Expression of six genes involved in oxidative phosphorylation decreased. PGC1α and PGC1β mRNAs decreased by ~22%. Seven genes in the carbohydrate metabolism pathway changed in response to HFD, and three genes confirmed by qRT-PCR: PFKFB3, PDK4 and GYS1. In a separate experiment, C57Bl/6J mice were fed HFD for three weeks and the same OXPHOS and PGC1 mRNAs decreased by ~90%, Cytochrome C and PGC1α protein by ~40%, while the same glucose metabolism genes changed by ~70%. These results suggest a mechanism whereby HFD downregulates genes necessary for oxidative phosphorylation and mitochondrial biogenesis, as well as glucose utilization and storage. These changes mimic those observed in diabetes and insulin resistance. To test hypothesis “c”, we measured changes in respiratory quotient (ΔRQ; metabolic flexibility) before and during euglycemic-hyperinsulinemic clamps in healthy young males. Anthropometric, laboratory measurements, fat biopsies and fat cell size (FCS) were measured after overnight fast. Adipose tissue gene expression (qRT-PCR) was measured. Metabolic inflexibility (lower ΔRQ) was associated with higher body fat, larger FCS and higher insulin-suppressed FFAs. ΔRQ was not related to fasting FFAs, but lower ΔRQ was associated with lower serum adiponectin levels. Higher adipose tissue inflammatory gene expression was associated with higher insulin-suppressed FFAs and lower ΔRQ. These results indicate fatness, adipocyte hypertrophy, blunted insulin suppression of FFAs, decreased adiponectin levels and inflammation, are associated with decreased insulin-stimulated glucose uptake and oxidation, an important component of metabolic inflexibility

    Precision exercise medicine: understanding exercise response variability

    Get PDF
    There is evidence from human twin and family studies as well as mouse and rat selection experiments that there are considerable interindividual differences in the response of cardiorespiratory fitness (CRF) and other cardiometabolic traits to a given exercise programme dose. We developed this consensus statement on exercise response variability following a symposium dedicated to this topic. There is strong evidence from both animal and human studies that exercise training doses lead to variable responses. A genetic component contributes to exercise training response variability. In this consensus statement, we (1) briefly review the literature on exercise response variability and the various sources of variations in CRF response to an exercise programme, (2) introduce the key research designs and corresponding statistical models with an emphasis on randomised controlled designs with or without multiple pretests and post-tests, crossover designs and repeated measures designs, (3) discuss advantages and disadvantages of multiple methods of categorising exercise response levels-a topic that is of particular interest for personalised exercise medicine and (4) outline approaches that may identify determinants and modifiers of CRF exercise response. We also summarise gaps in knowledge and recommend future research to better understand exercise response variability531811411153The consensus meeting that led to the writing of this manuscript was held with the financial support of the Pennington Biomedical Research Foundation, the Pennington Biomedical Research Center Division of Education, the LSU Boyd Professorship and the John W. Barton, Sr. Chair in Genetics and Nutrition. No funding and/or honorarium was provided to any member of the writing group for the production of this manuscrip

    PGC1α

    Get PDF
    PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α). CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α  −1 nucleosome (−1N) position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the −1N position revealed that those individuals with a −1N phased further upstream from the transcriptional start site (UP) expressed lower levels of NTPGC1α than those with the −1N more proximal to TSS (DN). UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the −1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and −1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133

    Determinants of the changes in glycemic control with exercise training in type 2 diabetes:A randomized trial

    Get PDF
    To assess the determinants of exercise training-induced improvements in glucose control (HbA1C) including changes in serum total adiponectin and FFA concentrations, and skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein content.A sub-cohort (n = 35; 48% men; 74% Caucasian) from the HART-D study undertaking muscle biopsies before and after 9 months of aerobic (AT), resistance (RT), or combination training (ATRT).Changes in HbA1C were associated with changes in adiponectin (r = -0.45, P = 0.007). Participants diagnosed with type 2 diabetes for a longer duration had the largest increase in PGC-1α (r = 0.44, P = 0.008). Statistical modeling examining changes in HbA1C suggested that male sex (P = 0.05), non-Caucasian ethnicity (P = 0.02), duration of type 2 diabetes (r = 0.40; P<0.002) and changes in FFA (r = 0.36; P<0.004), adiponectin (r = -0.26; P<0.03), and PGC-1α (r = -0.28; P = 0.02) explain ∼65% of the variability in the changes in HbA1C.Decreases in HbA1C after 9 months of exercise were associated with shorter duration of diabetes, lowering of serum FFA concentrations, increasing serum adiponectin concentrations and increasing skeletal muscle PGC-1α protein expression.ClinicalTrials.gov NCT00458133

    Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans.

    Get PDF
    Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD(+)) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD(+) precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 +/- 1.1 years, BMI 33.4 +/- 0.8 kg/m(2)) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 +/- 44 vs. 1,135 +/- 97 mumol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD(+) levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD(+) boosters can also directly affect skeletal muscle mitochondrial function in humans

    Remodeling Lipid Metabolism and Improving Insulin Responsiveness in Human Primary Myotubes

    Get PDF
    OBJECTIVE: Disturbances in lipid metabolism are strongly associated with insulin resistance and type 2 diabetes (T2D). We hypothesized that activation of cAMP/PKA and calcium signaling pathways in cultured human myotubes would provide further insight into regulation of lipid storage, lipolysis, lipid oxidation and insulin responsiveness. METHODS: Human myoblasts were isolated from vastus lateralis, purified, cultured and differentiated into myotubes. All cells were incubated with palmitate during differentiation. Treatment cells were pulsed 1 hour each day with forskolin and ionomycin (PFI) during the final 3 days of differentiation to activate the cAMP/PKA and calcium signaling pathways. Control cells were not pulsed (control). Mitochondrial content, (14)C lipid oxidation and storage were measured, as well as lipolysis and insulin-stimulated glycogen storage. Myotubes were stained for lipids and gene expression measured. RESULTS: PFI increased oxidation of oleate and palmitate to CO(2) (p<0.001), isoproterenol-stimulated lipolysis (p = 0.01), triacylglycerol (TAG) storage (p<0.05) and mitochondrial DNA copy number (p = 0.01) and related enzyme activities. Candidate gene and microarray analysis revealed increased expression of genes involved in lipolysis, TAG synthesis and mitochondrial biogenesis. PFI increased the organization of lipid droplets along the myofibrillar apparatus. These changes in lipid metabolism were associated with an increase in insulin-mediated glycogen storage (p<0.001). CONCLUSIONS: Activation of cAMP/PKA and calcium signaling pathways in myotubes induces a remodeling of lipid droplets and functional changes in lipid metabolism. These results provide a novel pharmacological approach to promote lipid metabolism and improve insulin responsiveness in myotubes, which may be of therapeutic importance for obesity and type 2 diabetes

    GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans.

    Get PDF
    GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression. Circulating GDF15 levels manifest very modest changes in response to moderate caloric surpluses or deficits in mice or humans, differentiating it from classical intestinally derived satiety hormones and leptin. However, GDF15 levels do increase following sustained high-fat feeding or dietary amino acid imbalance in mice. We demonstrate that GDF15 expression is regulated by the integrated stress response and is induced in selected tissues in mice in these settings. Finally, we show that pharmacological GDF15 administration to mice can trigger conditioned taste aversion, suggesting that GDF15 may induce an aversive response to nutritional stress.This work and authors were funded by the NIHR Cambridge Biomedical Research Centre; NIHR Rare Disease Translational Research Collaboration; Medical Research Council [MC_UU_12012/2 and MRC_MC_UU_12012/3]; MRC Metabolic Diseases Unit [MRC_MC_UU_12012/5 and MRC_MC_UU_12012.1]; Wellcome Trust Strategic Award [100574/Z/12/Z and 100140]; Wellcome Trust [107064 , 095515/Z/11/Z , 098497/Z/12/Z, 106262/Z/14/Z and 106263/Z/14/Z]; British Heart Foundation [RG/12/13/29853]; Addenbrooke’s Charitable Trust / Evelyn Trust Cambridge Clinical Research Fellowship [16-69] US Department of Agriculture: 2010-34323-21052; EFSD project grant and a Royal College of Surgeons Research Fellowship, Diabetes UK Harry Keen intermediate clinical fellowship (17/0005712). European Research Council, Bernard Wolfe Health Neuroscience Endowment, Experimental Medicine Training Initiative/AstraZeneca and Medimmune

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease.

    Get PDF
    BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04

    Germline EPHB2 Receptor Variants in Familial Colorectal Cancer

    Get PDF
    Familial clustering of colorectal cancer occurs in 15–20% of cases, however recognized cancer syndromes explain only a small fraction of this disease. Thus, the genetic basis for the majority of hereditary colorectal cancer remains unknown. EPHB2 has recently been implicated as a candidate tumor suppressor gene in colorectal cancer. The aim of this study was to evaluate the contribution of EPHB2 to hereditary colorectal cancer. We screened for germline EPHB2 sequence variants in 116 population-based familial colorectal cancer cases by DNA sequencing. We then estimated the population frequencies and characterized the biological activities of the EPHB2 variants identified. Three novel nonsynonymous missense alterations were detected. Two of these variants (A438T and G787R) result in significant residue changes, while the third leads to a conservative substitution in the carboxy-terminal SAM domain (V945I). The former two variants were found once in the 116 cases, while the V945I variant was present in 2 cases. Genotyping of additional patients with colorectal cancer and control subjects revealed that A438T and G787R represent rare EPHB2 alleles. In vitro functional studies show that the G787R substitution, located in the kinase domain, causes impaired receptor kinase activity and is therefore pathogenic, whereas the A438T variant retains its receptor function and likely represents a neutral polymorphism. Tumor tissue from the G787R variant case manifested loss of heterozygosity, with loss of the wild-type allele, supporting a tumor suppressor role for EPHB2 in rare colorectal cancer cases. Rare germline EPHB2 variants may contribute to a small fraction of hereditary colorectal cancer
    corecore