9,650 research outputs found
An alternative approach to efficient simulation of micro/nanoscale phonon transport
Starting from the recently proposed energy-based deviational formulation for
solving the Boltzmann equation [J.-P. Peraud and N. G. Hadjiconstantinou, Phys.
Rev. B 84, 2011], which provides significant computational speedup compared to
standard Monte Carlo methods for small deviations from equilibrium, we show
that additional computational benefits are possible in the limit that the
governing equation can be linearized. The proposed method exploits the
observation that under linearized conditions (small temperature differences)
the trajectories of individual deviational particles can be decoupled and thus
simulated independently; this leads to a particularly simple and efficient
algorithm for simulating steady and transient problems in arbitrary
three-dimensional geometries, without introducing any additional approximation.Comment: 4 pages, 2 figure
Negative forms and path space forms
We present an account of negative differential forms within a natural
algebraic framework of differential graded algebras, and explain their
relationship with forms on path spaces.Comment: 12 pp.; the Introduction has been rewritten and mention of cohomology
dropped in Proposition 3.2; material slightly reorganize
Obstruction Theory in Model Categories
Many examples of obstruction theory can be formulated as the study of when a
lift exists in a commutative square. Typically, one of the maps is a
cofibration of some sort and the opposite map is a fibration, and there is a
functorial obstruction class that determines whether a lift exists. Working in
an arbitrary pointed proper model category, we classify the cofibrations that
have such an obstruction theory with respect to all fibrations. Up to weak
equivalence, retract, and cobase change, they are the cofibrations with weakly
contractible target. Equivalently, they are the retracts of principal
cofibrations. Without properness, the same classification holds for
cofibrations with cofibrant source. Our results dualize to give a
classification of fibrations that have an obstruction theory.Comment: 17 pages. v3 includes improved introduction and several other minor
improvement
Loop Corrections in the Spectrum of 2D Hawking Radiation
We determine the one-loop and the two-loop back-reaction corrections in the
spectrum of the Hawking radiation for the CGHS model of 2d dilaton gravity by
evaluating the Bogoliubov coefficients for a massless scalar field propagating
on the corresponding backgrounds. Since the back-reaction can induce a small
shift in the position of the classical horizon, we find that a positive shift
leads to a non-Planckian late-time spectrum, while a null or a negative shift
leads to a Planckian late-time spectrum in the leading-order stationary-point
approximation. In the one-loop case there are no corrections to the classical
Hawking temperature, while in the two-loop case the temperature is three times
greater than the classical value. We argue that these results are consistent
with the behaviour of the Hawking flux obtained from the operator quantization
only for the times which are not too late, in accordance with the limits of
validity of the semiclassical approximation.Comment: 20 pages, latex, no figure
Low-power synthesis flow for regular processor design
Flow around an ICE2 high-speed train exiting a tunnel under the influence of a wind gust has been studied using numerical technique called detached eddy simulation. A wind gust boundary condition was derived to approximate previous experimental observations. The body of the train includes most important details including bogies, plugs, inter-car gaps and rotating wheels on the rail. The maximal yawing and rolling moments which possibly can cause a derailment or overturning were found to occur when approximately one third and one half of the train, respectively, has left the tunnel. These are explained by development of a strong vortex trailing along the upper leeward edge of the train. All aerodynamic forces and moments were monitored during the simulation and the underlying flow structures and mechanisms are explained
Future asymptotic expansions of Bianchi VIII vacuum metrics
Bianchi VIII vacuum solutions to Einstein's equations are causally
geodesically complete to the future, given an appropriate time orientation, and
the objective of this article is to analyze the asymptotic behaviour of
solutions in this time direction. For the Bianchi class A spacetimes, there is
a formulation of the field equations that was presented in an article by
Wainwright and Hsu, and in a previous article we analyzed the asymptotic
behaviour of solutions in these variables. One objective of this paper is to
give an asymptotic expansion for the metric. Furthermore, we relate this
expansion to the topology of the compactified spatial hypersurfaces of
homogeneity. The compactified spatial hypersurfaces have the topology of
Seifert fibred spaces and we prove that in the case of NUT Bianchi VIII
spacetimes, the length of a circle fibre converges to a positive constant but
that in the case of general Bianchi VIII solutions, the length tends to
infinity at a rate we determine.Comment: 50 pages, no figures. Erronous definition of Seifert fibred spaces
correcte
INTEGRAL observations of the blazar Mrk 421 in outburst (Results of a multi-wavelength campaign)
We report the results of a multi-wavelength campaign on the blazar Mrk 421
during outburst. We observed four strong flares at X-ray energies that were not
seen at other wavelengths (partially because of missing data). From the fastest
rise in the X-rays, an upper limit could be derived on the extension of the
emission region. A time lag between high-energy and low-energy X-rays was
observed, which allowed an estimation of the magnetic-field strength. The
spectral analysis of the X-rays revealed a slight spectral hardening of the
low-energy (3 - 43 keV) spectral index. The hardness-ratio analysis of the
Swift-XRT (0.2 - 10 keV) data indicated a small correlation with the intensity;
i. e., a hard-to-soft evolution was observed. At the energies of IBIS/ISGRI (20
- 150 keV), such correlations are less obvious. A multiwavelength spectrum was
composed and the X-ray and bolometric luminosities are calculated.Comment: 15 pages, 18 figures; accepted by Astronomy & Astrophysic
Meson resonances, large N_c and chiral symmetry
We investigate the implications of large N_c and chiral symmetry for the mass
spectra of meson resonances. Unlike for most other mesons, the mass matrix of
the light scalars deviates strongly from its large-N_c limit. We discuss the
possible assignments for the lightest scalar nonet that survives in the
large-N_c limit.Comment: 14 page
- …