7,733 research outputs found

    Thrice weekly nocturnal in-centre haemodiafiltration: a 2-year experience

    Get PDF
    Background: Adequate control of plasma phosphate without phosphate binders is difficult to achieve on a thrice-weekly haemodialysis schedule. The use of quotidian nocturnal dialysis is effective but not practical in the in-centre setting. This quality improvement project was set up as an exercise allowing the evaluation of small-solute clearance by combining convection with extended-hour dialysis in a thrice-weekly hospital setting. Methods: A single-centred, prospective analysis of patients' electronic records was performed from August 2012 to July 2014. The duration of haemodiafiltration was increased from a median of 4.5 to 8 h. Dialysis adequacy, biochemical parameters and medications were reviewed on a monthly basis. A reduction in plasma phosphate was anticipated, so all phosphate binders were stopped. Results: Since inception, 14 patients have participated with over 2,000 sessions of dialysis. The pre-dialysis phosphate level fell from a mean of 1.52 ± 0.4 to 1.06 ± 0.1 mmol/l (p < 0.05). The average binder intake of 3.26 ± 2.6 tablets was eliminated. A normal plasma phosphate range has been maintained with increased dietary phosphate intake and no requirement for intradialytic phosphate supplementation. Conclusion: Phosphate control can be achieved without the need for binders or supplementation on a thrice-weekly in-centre haemodiafiltration program

    Mechanical Evidence of the Orbital Angular Momentum to Energy Ratio of Vortex Beams

    Get PDF
    We measure, in a single experiment, both the radiation pressure and the torque due to a wide variety of propagating acoustic vortex beams. The results validate, for the first time directly, the theoretically predicted ratio of the orbital angular momentum to linear momentum in a propagating beam. We experimentally determine this ratio using simultaneous measurements of both the levitation force and the torque on an acoustic absorber exerted by a broad range of helical ultrasonic beams produced by a 1000-element matrix transducer array. In general, beams with helical phase fronts have been shown to contain orbital angular momentum as the result of the azimuthal component of the Poynting vector around the propagation axis. Theory predicts that for both optical and acoustic helical beams the ratio of the angular momentum current of the beam to the power should be given by the ratio of the beam’s topological charge to its angular frequency. This direct experimental observation that the ratio of the torque to power does convincingly match the expected value (given by the topological charge to angular frequency ratio of the beam) is a fundamental result

    The Nature of the Suspension Effect, With Special Reference to Clay Suspensions

    Get PDF
    The recent development of practical cation-sensitive glass electrodes prompted the writer to investigate the feasibility of their application to the monitoring of nutrient-cation activities in natural soils. It soon became evident that the nature of the suspension effect must be more clearly understood if such application were to yield meaningful results. The suspension effect may be defined as the pH of solution in equilibrium with a suspension minus the pH of the suspension, both pH values being measured potentiometrically. Two theories have been advanced to explain the cause of the suspension effect: the observed pH difference is real, the observed pH difference is largely an illusion. The suspension effect is an error caused by a liquid junction potential at the boundary between the saturated KCL salt bridge and the suspension. If theory (1) is correct, then potentiometric measurements on soil systems can be interpreted in terms of ionic activities. If theory (2) is correct, however, such interpretation is subject to error. The purpose of the present study was to devise experimental means of distinguishing between theories (1) and (2) or assessing the importance of each

    Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Get PDF
    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow

    Effect of gravity on methane-air combustion

    Get PDF
    Analytical and numerical techniques dealing with the theoretical description of the influence of zero and reduced gravitational acceleration on diffusion flames, with a view to improving understanding of fires in space vehicles, were developed in support of experimental work performed in this area. This was done in order to confirm qualitative understanding of the process, to determine the quantitative accuracy of numerical predictions, and to establish a mathematical model of the process for subsequent use as a predictive and exploratory tool. The following results were accomplished: (1) derivation of differential equations and boundary conditions describing the system, (2) details of the computations, using a FORTRAN computer program, for calculating the flow and heat and mass transfer in two dimensions (both steady and unsteady). It was shown that the experimental behavior can be reproduced with fair accuracy, provided that the time step is sufficiently short

    A simple model of mixing and chemical reaction in a turbulent shear layer

    Get PDF
    Arguments are presented to show that the concept of gradient diffusion is inapplicable to mixing in turbulent shear layers. A new model is proposed for treating molecular mixing and chemical reaction in such flows at high Reynolds number. It is based upon the experimental observations that revealed the presence of coherent structures and that showed that fluid elements from the two streams are distributed unmixed throughout the layer by large-scale inviscid motions. The model incorporates features of the strained flame model and makes use of the Kolmogorov cascade in scales. Several model predictions differ markedly from those of diffusion models and suggest experiments for testing the two approaches

    The Metabolic Syndrome: A Modern Plague Spread by Modern Technology

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73419/1/j.1751-7176.2009.00191.x.pd

    Multidimensional collaboration; reflections on action research in a clinical context

    Get PDF
    This paper reflects on the challenges and benefits of multidimensional collaboration in an action research study to evaluate and improve preoperative education for patients awaiting colorectal surgery. Three cycles of planning, acting,observing and reflecting were designed to evaluate practice and implement change in this interactive setting, calling for specific and distinct collaborations. Data collection includes: observing educational interactions; administering patient evaluation questionnaires; interviewing healthcare staff, patients and carers; patient and carer focus groups; and examining written and audiovisual educational materials. The study revolves around and depends on multi-dimensional collaborations. Reflecting on these collaborations highlights the diversity of perspectives held by all those engaged in the study and enhances the action research lessons. Successfully maintaining the collaborations recognises the need for negotiation, inclusivity, comprehension, brokerage,and problem-solving. Managing the potential tensions is crucial to the successful implementation of changes introduced to practice and thus has important implications for patients’ well-being. This paper describes the experiences from an action research project involving new and specific collaborations, focusing on a particular healthcare setting. It exemplifies the challenges of the collaborative action research process and examines how both researchers and practitioners might reflect on the translation of theory into educational practices within a hospital colorectal department. Despite its context-specific features, the reflections on the types of challenges faced and lessons learned provide implications for action researchers in diverse healthcare settings across the world

    Further Isotopic Studies of Heavy Nuclei in the 9/23/78 Solar Flare

    Get PDF
    The isotopes considered range from He to Mg (Z from 2 to 12). A more accurate value of the Ne-22/Ne-20 ratio is obtained by extending the energy interval for isotope analysis. A significant difference persists between the Ne-22/Ne-20 ratio in this flare and that for the solar wind. How the sun can apparently emit two distinct isotopic components remains a question. Although relatively little is known about the solar wind isotopic composition, it does not appear that the solar wind isotopes have been altered by a simple mass-dependent fractionation process. Reference is made to models that have been proposed which might produce selective enhancements

    The isotopic composition of cosmic ray B, C, N, and O nuclei

    Get PDF
    We report new high resolution measurements of the elemental and isotopic composition of galactic cosmic ray B, C, N, and O nuclei with ~ 30 to ~ 130 MeV nucleon^(-1). These observations place limits on the isotopic composition of the cosmic ray source and restrict possible models of cosmic ray origin and propagation. In particular, we find that N is significantly depleted in the cosmic ray source with respect to the solar system and local interstellar medium, a result inconsistent with models in which a majority of cosmic rays are accelerated interstellar medium material
    • …
    corecore