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1. INTRODUCTION
1.1. The Problem

The NASA Lewis Labecratory is conducting an investigation

into the influence of zero and reduced gravitational accel-
eration on diffusion flames, with a view to improving under-
standing of fires in space vehiﬁles. Experiments have been
conducted by NASA Lewis personncl on the burning in alr of a
jet of methane emerging from a . cylindrical tube; the air is at
rest relative to the tube, apart from motion induced by the
jet; the whole apparatus can be drooped down a tower, so that
zero-gravity operation may be investigated.

In experiments in which the apparatus is first at rest, and
then suddenly dropped, the flame length passes from one
(nearly) steady value to znother value, after passing through
smaller transient values, The re-establishment of a steady
state lasts about 0,5 seconds., The tube radius is in the

range 0.05 to 0,44 cm, and the flow rate of methane is in the
range 1 to 8 cm3 per sec. The maximum velocity at the tube-
exit axis is around 1200 em per sec. The whole experiment lasts
for about 5 seconds, The pressure is atmospheric, and the air-
and gas- supply temperatures are around rcom temperaturc. The

flow is laminar,

The NASA Lewis Laboratory wishes to compare its experiment-

al findings with numerical solutions of the differential equa-
tions believed to govern the processes, with a view to confirm-
ing “qualitafive understanding of the process, to determine

the quantitative accuracy of numerical predictions, and to
establish a mathematical model of the process. for : subsequent

.

use as a predictive and exploratory tool,

During recent years CHAM Litd has developed a range of analytiecal
models and numerical techniques to study fluid-dynamic,heat
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discussion of the aralytical results obtained in this study.
The final chapter is devoted to concluding remarks concern-
ing the computational accuracy, and efficiency of the comput-
er code, together with an assessment of the physical real-

-ism of the resulis. In each case, suggestions are made con-

cerning means by which they may be improved.

Previous Work

The e?rlmn'analytiéal study of steady laminar diffusion flames
can be categorised in terms of firstly, semi-empirical app-
roaches based uﬁon correlations of specific data (see tyvp-
ically Refs 1 and 2) and secondly, special solutioné of the
conservation equetions (e.g. Refs 3 and 4). These have been
sumnarised in References 5 and 6, These approaches either ig-
nored the effects of gravity.or provided inadequate agree-
ment with experiment when gravitional effects are significant.

More recent developments using more precise numerical tech-
nigques allied with greater computing power in modern comput-
ers have enabled more sophisticated analytical models Lo be
studied. These developments recognise the need to solve the
equations for mass,momentum and energy ih circumstances
which take into account interdependence of the velocity,
temperature and concentration fields. These methods also use
finite-difference forms of the governing differential equa-

tions which reduces the restrictions on the generality of

the boundary conditions and provide a framework for rapild
development of the analytical models to include for

example the effects of gravity. Edeiman et al.(Ref 7) dev-
eloped a model with sufficient generality that further
insights could be gained concerning the effects of gravity
on steady laminar diffusion -flames, Good agreement was
achieved with experimental results in normal-g flames, how-
ever,. predictions were not so good under conditions eof zZero

gravity.
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_transfer and combustion problems, These models and tech-
nigques have been applied to a variety of problems, both
steady and unsteady, with and withont chemical reaction,

The major purpose of the study described in this report

was to demonstrate that these modelling and numerical tech-—
niques could be used to study the transient flame problem
which NASA's Lewis Laboratory has been studying experiment-
ally,énd, furthermore, to demonstrate that a computer code
based ﬁpon the analytical model and numerical techniques

can be developed to give good quantitative as well as qualit-

ative agreement with experiment.

CHAM "used its EASI (Elliptic Axisymmetric Integrator) code
as a starting point. The specifiec derivative of this code
which was assembled for this project described herein was
termed EGOMAC (Effect of Gravity on Methane-Air Combustion)

"The program of work has been done in two parts. Firstly EGOMAC
"was assembled and run for a particular choice of geometry

and fuel-supply conditions., When the code whs seen to produce
gualitatively correct results for the transient flame, the
second part of the work was devoted fo a systematic investig-
ation of the effects on the computed solutions of:- computat-
ional grids; time steps; outer boundary conditions; number of
iterations; relaxation factors; and solution order of equat-
ions, The code was additionally exercised for two other fuel
.flow rates, and two other tube diameters. In addition the
sensitivity of the solutions to changes in the specified pﬁysi—

cal chemical constants was alsc studied.

The remaining two parts of the introductory chapter are dev-
oted to a description of previous work, and to outlining the
gpecific new features embodied in the CHAM approach to this
problem. The second chapter describes the mathematical anal-
ysis upon which the computer code is based. The third and
fourth chapters contain respectively a presentation and

~
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Personnel at CHAM Ltd have been developing numerical models
and solution algorithms for predicting axially flowing
reacting flows, Patankar and Spalding (Reference 8) describe
the GENMIX code which has been widely used for diffusion
flames under “parabolle" conditions, i.e. those of steady
flow without upstream propegation of influences from down-
stream,
Edelman et al,concluded that axial diffusion of mass, energy
and momentum which introduced "elliptic" effects (i.e.
propagaticon upstream of influences from downstream) becomes
---important at low-Reynolds-Number, zero-pravity conditions,
This indicates an explicit requirement of the analytical
method solving the transient laminar flame problem, viz that

it should be an elliptic method.

CHAM has developed a basic elliptic code (BASI) which is
—well suited to this problem, and has thersfore used it as
the basis for the development of the EGOMAC code which is
described in this report.

1,3. Outline of the Present Contribution

The EGOMAC code contains all of the computational advantages
contained in the basic EASI code i.e, rapid convergence and
accuracy without the excessive bomputiﬁg times usually assoc-~
iated with elliptic codes, The main contributicn of the work
presented in this report is to demonstrate that the EGOMAC
code will efficiently compute the hydrodynamic and thermo-
dynamic fields associsted with the laminar flame under trans-
ient gravity conditions. This demonstration renders the
validity of the novel features embodied into the code self-
evident. These novel features include:-

1, Inclusion of axial diffusion in the physical model which
in certain cases is the mechanism which keeps the flame

alight.

2. Provision of lateral pressure gradients in the model,
2 ‘
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3. The use of hybrid differencing scheme to enhance both
accuracy and stability.
4, The use of implicit rather than explicit procedures for

calculating all variables in the flow field (this is
the heart of the SIMPLE Algorithm),

During the study deseribed herein, it should be noted that
additional computationdl efficiency was achieved by ensuring
that the initial conditions, corresponding to a 1lg steady
flame were computed using the GENMIX code. In this way, it
waspossible to ensure that the transient c¢alculaticn started
from a fully'converged and precise definition of all relev-
ant physical quantities., This together with the significance
of the novel features contained in the EGOMAC code will be
described in more detail in later chapters.
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2. MATHEMATICAL ANALYSIS

‘

2,1 Differential Egquations and Boundary Conditions

Differential Equations

Equations are solved for the following eight dependent

variables

o the compenents of velocity in the axial and radial

(x and r) directions - u and v,
e the static pressure - p,

@ -~ - the enthalpy —h; ~—e—- - .- .-

° the mixture fraction - f - defined as the proportion
of Tluid present at any point which originated from

the nozzle,
=] the mass fraction of fusel (methane) - Me s

] and the radiation-fiux quantities - Rx and R, which
are defined in terms of the radiative heat fluxes in
the positive and negative x direetion (K and L} and the
positive and negative r direction (I and J), as follows

R, =} (K +1L) o ‘ (2.1-11)

R 2 & (I +J) . {(2,1-2)
The conservation equations for most of the above quantities
{(viz. for all except p, Rx and R.,., which are considered later)

are solved in the general form appropriate to an unsteady,

axisymmetric flow given below :

30 G-3RIl RENL = 5,
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. flame-

Jet Nozzle

Stagnant Atmosphere

'

Fig, 2-a:The Domain of Integration
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In this - equation, t is the time, ¢ is the general dependent

variable and p is the density.
The diffusion coefficient for ¢ (P¢) is evaluated as follows !

For velocities, F¢ = u : (2.1+4)

and, for other variables, P¢ = u/c¢ (2.1-5)

Here, ¢ stands for the laminar viscosity of the fluid
(which is ecaleculated as described in Section 2.2 below),
and o, is the Prandtl or Schmidt numbér. In the present

¢

work,‘ch, U and o are taken to be constant and equal to
fu . .
0.6, except that for ocne calculation (case 26) M is set to

0.7.

Yalues are given in Table 2-a for the source terms s¢. The
‘symbol g there stands for the gravitational acceleration in
the negative x directionr (se¢ Fig. 2-a). In the source term
for-h, a-is the absorption coefficient, and E is the black-
body emissive power, which is related to T {the local
absolute fluid temperature) and the Stefan-Boltzmann

‘constant (o), by

E = gT" (2.1-6)
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Finally, in the seource term for mfu(which is a consequence
of presuming that the reaction~rate is given by an Arrhenius
expression) Z and A are constants whose values are set as
described in Section 3, while Ty is the concentration of 0,.

The pressure p, is deduced, by the method described in
Section 2.3, from the mass-continuity relation, which

0F L W) 4 12 (pUT) = Q (2.1-7)
- T er . '

d(n dR:y + 5. = o (2.1-8)
de Tdx ) =
2d ([, 4R, -
> d‘r'( R, d—;) + Sgw O (2.1-9)
where, I—'R = '—‘/(' o+ 5) ) (2.1-10)

3
I
1..1
\
(‘\\
a
+
n
+
<)
~
,{
-

(2.1-11)

S = a B + s CR,_ + Rrj/l 7(0'*”5) R,'x: (2;1—12)



- 15 -

Sp.= B + s (R +Rp)/2~ (ars)R, (2.1-13)
The symbol s here stands for the scattering coefficient.

Egns, (2.1-8) and (2.1-9), it shonld be observed, can be
regarded as especially simple forms of the general 4

egquation (Egn. (2.1-3); they lack the time derivative (since
radiation is not stored), the convection terms (since
radiation is not conveved by bulk movement), and the diffusion
term in the direction normal teo that of the radiation flux.

Boundary Conditions

‘

The solution domailn is shown in Fig. 2-a. Boundary conditions
are applied af all four boundaries as described below.

At the nozzle, the rate of mass inflow is specified; the‘
axial-velocity u profile is parabolic, and the radial
velocity (v) is zerxo. The mixture fraction f is unity by
definition; and when, =as ;n the case here, the incoming
fluid is pure methane, Mfu is also unity. The enthalpy h ig
calculated from the specified fluid temperature as described

in Section 2.21.

At the remainder of the lower (AB) boundary, and at the outer
{BC) boundary, h is deduced from the specified ambient
temperature; u, £ and me 8aré zero at both boundaries, and
the lateral velocity v is zero at the lower boundary. At

the outer (BC) boundary, the v velocities are set so as to
account for the lateral mess inflow by entrainment.

The distribution of mass inflow was previously determined
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from solutions with the boundary-layer procedure, GENMIX
(Ref. 8), and is tabulated below. However, it is important
to remark that, for the calculations reported, the outer
boundary was chosen to be sufficiently remcte Irom the
‘flame, that the effect of the conditicns prescribed there
on solutions within,K the fiamé was negligible,*’

X CIt. w_kg.s_1
0.00 0
0.40 1.64,107°
0.90 4.10,10 ¢
2.10 ' 9.56,107°
3,18 1.44,10° F
4.46 1.95,107°
5,08 2,184,10° %
6.49 2.65,107 5
7.27 2,92,1075
8.986 53,24,1075
: 9.40 3.57,1078
20.70 3.96,107%
12.20 4,38,1075
13.90 4.83,107°8
15,90 . 5.35,107 %

Table 2-b : Entrainment mass flow per radian (¢¥) at the
outer (Bc) boundary.

* ' This was .confirmed by tests in which the mass flows
were changed to three times the values tabulated.
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At the upper boundary (where outflow occu%s), and at the
symmetry axis, the lateral velocity (v) is zero, and the
inwardly-directed flux of u, h, Mg, and f is zero.

Finally, the boundary conditions for RX and Ry at the
symmetry axis are deduced from the knowledge that the net
radiative heat transfer across the axis of symmetry is
zero; elsewhere the presumption is that outgoing radiation
escapes without reflection, while the incoming radiation
is oT}, where T, is the temperature of the fluid at the

boundary.

2,2 Auxiliary Inputs

2.2.1 Thermodynamic Functions

The enthalpy (h) is calculated as follows

h = Ehjmj + H me.,
(2.2-1)

where H is the lower value of the heat of formation of
methane; the value used here is H=4.107 J/kg. The
summation sign denotes sumﬁation over all species present.
The species enthalpies hj are defined as follows :

a

h@E (Cjo + Gl +C3aT 4 ¢, T2)T (2.2-2)

The coefficients Cj are tabulated in Table 2-C.



- 18 -

: -2 -z -t -8
Species | C j0x1o le.xlo Cj2'10 Cj3.10
o Oz lr o O17 3
(3 /kg) (3/ke%K) | (3/ke"K?) | (3 /kg"K?)
N, 10.435 -5.3981 1.2784 -3.3472
0, . 8.7061 -} 15.800 ~0,2186¢ -0.13947
CO2 6.4748 70.181 -3.2833 5.8576
HZO 18.343 0.019232 2.7700 —~7.2523
{(Vapour)
CH, 15.0995 212.57 -1.8268 -8.3016

‘Tab;e 2-C . The values of the Cj irn Egn. (2.2-2)

The species concentrations in Egn. (2.2-1) are deduced as

described in Section 2.24 helow,

2,2.,2 The Calculation of Viscosity

The local mixture viscosity (u) is determined from the

following formula -

P= Mo, P, T mCH4[~lCH4+[m;O+mcbl+ mﬂDFNz (2.2-3)

Here, it will be cbserved, the combustion preducts are
lumped together with the nitrogen; the error in F.intréduced
by this practice will be small when, as is the case here,
'the nitrogen is present in larger guantities than HZO and COzz
In a2ny case, the viscosities of H,0 and CO, are not markedly

différent from that of N2° ;
¢
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The wviscosities Henr Mox and uy are related to the loecal
2

temperature via Sutberlgnd's Law, which i=s
= ALT™B+T) (2.2-4)
H? t T ’

The coefficients Aj and B'j are tabulated below :

Species | Ay x 10° B, (°k)
e B | "
(kg/msecoK )]

CH, 1,00480 171.473

o, 1.74410 144.207

N, 1.40510 111,452

Table zfd : The coefficients in Sutherland's #iscosity
law - Eqn. (2.2-4).

2.2.,3 The Calculation of Density

The local gas density (p) is calculated from the perfect-

gas law :

F:: ?/{HT%MMVMQ} ‘mﬁdx
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where E is the mean fluid pressure, presumed for the present
calculation to be that of the ambient surroundings; R is the
universal gas constant; and Mj is the molecular weight of
species j. The summation is over all species present,

2.2.4 The Chemical-reaction Models

The chemical reaction considered is:-—
CH,+20, — 2H,0 + CO,

The reaction is presumed to be irreversible, and to oceccur

in a single step.

Two reaction models have been emploved., The first presumes
that the rate of reaction is infinite; fuel and oxygen
therefore cannot coexist. When this is so, there is no need
to solve the transport equation for Myp.s both me. and m,.
may be deduced from the mixture Ffraction f as follows*

It O <f< i,

mfu_ = Q 3 Moy T o 00(1— - (2.2-6)

sb

If fe € £ €1 :

M= 0 , Mg = £- I (2.2-7)

. 1- f5!:

Here, m 1s the mass fraction of oxygen in the ambient air,
and fst’ the mixture fraction for a stoichiometric mixture, is
* . These formulae, and others given later in this

section, presume that miu at the Jjet is unity; i.e.
> the jet is composed of pure methane.
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oo (0 im0

where, i is the mass of oxygen needed just to burn unit
mass‘oflfuel to completion; for the reaction considered here,

therefore, i = 4,

The above formulae are depicted graphically in Fig. 2-b,
which shows the wariation of Mps Mgy (and also mNQ’ mH20
with mixture fractionm £f.

1

and M
C02

T

|
f

mmman .-

OX co,

m
H,0

0 i i— 1
st

Fig, .2-b : Variation of species concentrations with £ for

an infinitely-fast reaction.

In the second reaction model, the rate of reaction is
calculated from an Arrhenius expression. The transport
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equation for Wp given in Section 2.1 is solwved, and m

is computed from :

oX

mOI. = ('?‘-' £.) mo-x’DO — :L(i-_. miu) (2.2~-8)

For both reaction models, the following formulae are
employed for calculating the remaining species concentrations

o= (£-my) 2 Mo

my, = 1- m, -m, “Me =M

2.3 The Soluticn Method

2.3,1 ‘The Finite-Difference Eguations

(2.2-10)

(2.2-11)

(2.2-12)

The equations are solved by a marching-integration finite-
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difference method, based oﬁ the work of Patankar and
Spalding (Ref. 9), in which the domain of solution in
the x~-~-1 plane is imagined to be covered by z mesh of

grid points as shown below¥*

Fig. 2-¢ : The finite-difference grid.

The value of ¢ at grid point P and at a particular time

t" is related to the value at P at the previous time step
(¢;), and to the values at the neighbouring grid points

X+, X-, ¥+ and ¥-, by integrating the general ¢ eguation
(Egn. {2.1-3) over the small contrel volume or cell
surrounding P shown in Fig. 2-¢. For performance of the
integration, realistic assumptions are made regarding the
variations of ¢ in the X, y and t directions between grid
nodés; for most purposes the variafions are taken to be
stepwise. The convective and diffusive fIluxes are, howe&er,
calculated using a speceial hybrid difference scheme, due to
Spalding (Ref. 10), which is designed to improve accuracy

I Because the general solution method described
here is valid for Cartesian (x,yj c;ordinates as
well as the cylindrical coordinates used here,
‘the symbol v is oftern used throughout this

gsection to refer to the radial direction, -
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and to eliminate instabilities whiech can occur when the
convection terms are large compared with the diffusive
ones. The 3@)/9t term is evaluaied on the presumption of
linear wvariation of ¢ with t; for all other purposes, the
new values of ¢ are assumed to prevail over the whole of

time range t% to .

The outcome of the integration is a finite-difference

equation of the form :

Ap éPp = Am q’m + Ay Py + AY+ ¢Y+
T ALy + ATPL + Sy (2370

in which equation the coefficients Ax+’ A, Ay+ and Ay_
contain the effects of conveetion and diffusion, while

AB accounts for the unsteady term. The integral source
term has been written in the linearised Fform 8,7t Sp¢p*, and
the coefficient 8_ has been combined into Ap, which ig

P
defined as

AP = A, A Ay T Ay v AS ~S. (2.3-2)

The velocities are treated, in two respeéts, differently
from other variables. TFirstly, the veloeity grid points
are located midway betweerd the nodes for other variables.
This arrangement, which is illustrated in Fig. 2-d, has the
convenient feature that the veleocitlies are stored -midway
between the pressures which drive them. The second special
feature of the wveloecity equations, is that, in preparation’
" for fhe calcqlation of pressure by the qeans‘described in

*Footnote : The use of this form, when 3 is negative, is often
found to enhance the stability of the soXution; for, when (S,)
iz large, eguation (2.3-1 ) tends to

_ At
dplAp + (=801 = Aoy,
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the next section, the pressure-gradient part of the source
term is separated from the rest. The finite-difference
eguation for u, for example, therefore has the form :

Apup = Ay, uy, + Ax Une A+ Avye yy + Ay uy

[} o w '
+ A up + Su + Dp (Fx__ FP) C(2.8-3)

The subscript nomenclature adopted for the velocities is
illustrated in Fig.(2.3-3). Thus, P refers to variables
stored at nodes within the boomerang-ghaped envelope in the

figure.

Finite-difference equations may be derived for Rx and Ry,
in a similar manner to that for (P by integration of Eqgns.
(2.1-8) and {(2.1-8).

The resulting equations have the form :

APRJGP = A}H- ijx:l- + Ax-—Rx,x- - Su_ (2.3" 4‘)

-

.APR3P'= Ay+Rﬂ,y+ + AY—R‘-},)'_ ~+ Su (‘1.3—5)

2.3.2 " The caleculation of pressure

Pressure is calculated by a novel procedure due to Patankar
and Spalding (Ref. 9), which at cach time-step the momentum
equations are first solved for an estimated pressure field,
which is subsequently corrected so as to ensure that the
corrected veloelty field satisfies mass continuity for each
cell.  This is achieved as described below.

The finite-difference form of the mass-conservation squation
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may be written as

(405 654+ ows oy - ot

+ e, - A pv, = O (2.3-0)

where 8x and 9y are all dimensions, and B s ay+ and ay_
refer to cell face areas. All these gquantities are shown

in Fig. 2-c¢.

The velocity corrections (u' and v') can ke related by the
_Egl}gying approximate linear relations to the pressure

corvections (p')

w I X .

uy = E o ( Py — Pe) (2.3-5)
I w i 7 i ' :

Tp = E, ( Py~ Pe) (2.3-8)

In steady-state calculations, the coefficients EB and

E; are simply set equal to D;/Ap and D;/Ap. For transient
calculations, however, a stability-enhancing form#* is used,
in which E; , for example, is set to D;/Ag. '

The steady-state version, in contfast, presumes that

w., = u'x_ = u‘y+ = u'y_ = 0,

Substitution of these expressions {(and similar formulae for

u'x+ and u'y+ into Egn., (2.3-4), yields an egquation for the

pressure correcticn p', of the following form :

*Footnote : Which results from presuming that in a transient
flow in which changes are taking place
systematically, it is reasonable to suppose that:
i

! ! ! Il
Uo, =5 Uy oy Uy ot Uy o2 e

F
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4
ApPe = AP + APt AvsPre + Aubr — Mo
(2.3-7)

where m_ is the mass source at P assoclated with the
velocity field (u* and v#*) calculated from the estimated

pressures; i.e.

50 . #* *
MP = EE: _.L‘:l:% SIS% + Clx F:{__‘_u.x.‘. -_— O‘_x Fx-l’f’;

. *
.1 a‘i}* F‘é*'v‘ji- - O.,%_, [3}- 'U‘:r (2.3-8)

2.3.3 Solution of the Equations

The overall—solution scheme is as follows; at cach time
step, the following operations are performed :-

(i) The first operation is to calculate the fluid
properties ¢t and p at each grid node, from the

temperatures at the previous time step.

(ii) The momentum equationsAare then solved Ior the
estimated pressure (p*) field, to yield u*
and v¥, The p*'s are usuazlly taken as equal to
p°. ’ '

(iii) Next, the p' equations are solved, and the
appropriate corrections are applied to the
pressures and velocities, according to Eqns,
(2.3-5) and (2.3-6).

(iv) TFinally, the equations are solved for the remaining

¢'s,



- 29 .

In some cases (detailed in Section 3), the practice was
adopted of iterating on u, v and p by repeating steps

(ii) and (iii) several times, and using, for all iterations
but the first, the calculated pressures at the previous
iteration as the estimated pressure field,

Finally, it should be remarked that the sets of finite-
difference equations of the form of BEgqn. (2.3-1) are
solved by the fast alternating-direction TDMA method
described in Ref. 9.

2.3.4 .The Provision of Steady-state Solutions.

The initial conditions of the zero-gravity ftransient
calculations, were solutions obhtained for the steady-state
situation with gravity for the samc conditions. TFor these
steady-—-state calculations, it is of course desirable to
employ realistic initial guesses to the fluid-propertiy
fields; in parfticular, high initial temperatures must be
provided in the region of the flame, in order to ensure that
ignition occurs. For the computaticons reported here, the
initial conditions for the steady-state solutions were
calculated by presuming parabolic profiles of u and uniform
profiles of all other guantifies within the flame (Fig.
2-f). The overall balance equations for mass, momentum,
mixture fraction and enthalpy for the conical-shaped flame

are then -
- 2 = - > )
.f’——B‘:’,_‘ 8= ( - “iR )O + Y ' (2.3-1)
i--:—a:‘.l. R-,_ - i (éaz R'_:_ ) .
3 2 307 17 Jo (2.3~2)

I;_E.'f__ i (f_—h 4R ) (2.3-3)
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Fﬁ—si—b = (F%ij> + wkoo (2.3-4)

Here, the overbar denotes mean values within the flame,
and subscript o refers to conditions at the nozzle; ¢
is the entrainment mass flow given in Table 2-b.

These equations are solved, assuming infinite reaction
rote, to yield R, u, h and T, which provide initial values
for u, b , and T. The pressure is presumed uniform,
initially, at atmospheric pressure, and v is set so as

to satisfy local continuity.

Furthermore, when the Mgy equations were solved, a steady-
state solution for infinite reaction rate was used so as
to provide initial conditions for the finite—reagtion-

- rate caleulations,

2.4 The Computer Program

The calculations have been performed with a version of the
CHAM computer code, EASI (the name stands for’ elliptic
axisymmetric integrato;), which is a general computer program,
written in Foriran IV, for calculating flow and heat and

mass transTer in two dimensional flow with orx without re-
circulation. Both unsteady and steady flows may be handled,
znd the solution may be performed in cartesian oxr cylirdrical-

polar coordinates.
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DETAILS OF THE COMPUTATIONS

Introduction

3.2,

Task II of_the contract required performance of computations
for 25 'dififerent cases to assess the capability and accur-
acy of the solution procedure. Some of these cases were
devised to illuminate the effects of certain parameters of
the numerical procedure, such as the pumber of grid points,
time step and under-relaxation factors, Other cases inves-
tigated the response of the sclution to wvariations in the
experimental conditions or the reaction-rate constants,

"In the course of carrying ocut the computations, and due

to the lack of experimental data concerning the reaction-
rate'constants, it was decided to perform computations for
some additional cases, In fact a total of 21 extra cases
were studied, bringing the total number of cases tp 46, The
specifications of all these cases are presented below.

Specifications of the Cases Studied

Case 0

The experiﬁental conditions of this case are those specif-
ied in Task I of the ccntract and thus the label 'standard
case! will be used later in the report to refer to this

casg,

Case 1 -

The number of grid nodes was decreased by 51% from that of

Cagse 0,

* Cage 2

The number of grid nodes was increased by 40% from thatof Czse

Case 3
The standard time-step (.01 sec.) was decreased by a factor
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of 3 for the first 0.4 sec, of the transient solution,

Case 4

The standard time-step was decreased by a factor of 10 for
the first 0.4 sec. of the transient solution.

¢

Case &
The standard time-step was decrcased by a factor of 50 for

the time interval starting at .01l seec. and ending at 0,308

Sec.

Case 6
The stanrdard time-step was increased by a factor of 10
throughout the interval of =meroc to 1 sec.

Case 7

The position of the cylindrical boundary BC (Fig,1) was
moved outward by 50% of the standard value, The converged
steady-state ( i-g ) solution for the standard case was

read off disk and employed as the starting conditions for
this case, except that the velocities along the cyvlindrical
boundary were appropriately modified to ensure the same
fluid entrainment for both this case and the standard case.

Case 8 - .
The position of the c¢ylindrical boundary, BC was moved
inward by 50% of the standard case.

»

Case O
The number of iterations, at each time step, on the hydrof

dynamic variables u,v,p were doubled. Previously, only
one iteration was performed during the transient solution,

Case 10
As for 9 except that the hydrodynamic variables were iter-

ated upon four times.
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Case 11
This case examines the effect on the transient solution

of under-relaxing the dependent variables. The following
formula for under relaxation was used to calculate the

value of a dependent variable QP :
P, = (-} Py X

where Qp and QOP are the values of ¢ at the current and
previous time-steps respectively, and ¢ is the under-rel-
.axation factor. The value of ¢l was taken as 0.5 for all

variables.

Case 12
As for case 11 except that the value of of was decreased to ,25

Case 13
The order of solution of the finite-difference equations

was altered as shown in table (3-b).

Case 14 _ . ‘
A further change of the solution order was made as shown

in.table (3-b).

Case 15.

The fuel flow-rate was reduced to 1,08 cmsfsec. The long-
itudinal length, Xl, of the integration domain was reduced
to 4 em to accommodateapproprirtely the shorter flame, This
adjustment of Xl was based.on.the_analytical solution of a
constant-property laminar diffusion flame that predicts that
the Tlame length is proportional to the fiow rate. The hydro-~
dynamic variables U, ¥V, P were iterated upon twice to smooth
out the solution.

Case 16
As for case 15 except the fuel flow rate was increased to
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5.15 cmsfsec and the value of Xl was correspondingly

adjusted.

Case 17

Both the mass flow-rate and the nozzle dliameter were
increased as shown in table (3<2). The longitudinal length,
Xy, of the integratiqn domain was estimated as discussed
earlier, The radial width, Yl’ of the domain was also estim-
ated from the constant-property analytical solution, which
predicts that the maximum f£lame width is proportional to the

nozzle diameter,

The contract required that for this case, the converged
_solution of the steady (l-g) condition ke obtained and used
as the initial condition for the following unsteady case,

Case 18
The experimental conditions for this case were the same as of

Ease 17 except that here the gravity was zero,

Cage 19

The fuel flow-rate was smaller than that of Case 18 but
the nozzle diameter was increased as given in table (3-a).

Case 20
The fuel flow-rate and the nozzle diametexr were both smaller

than those of case 19,

Cases 21 to 25

In the previous 20 cases, the infinite-rate reaction model
(secticn 2) was employed to obtain the local mass fractions
of fuel, oxidant and producis, This model, because it assumes
that reaction will always take place whenever fuel and oxidant
co-exist locally, cannot predict the flame extinction which
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¢

occurred experimenta11§ in Case 20, Thus, in order to

predict this extinction, we must employ the finite-rate
reaction model (Section 2.24),provided that the approp-

riate values of the counstants A4 and p are known, Since

there was no suitable information to assist in ascribing

the values of A and p these quantities could be treated as
parameters that could be freely varied until the desired
solution was obtained. The converged (l-g) infinite-rate
solution was taken as a starting point; this corresponds to
A=0, Then successively increasing wvalues of A were employed
(Cases 22A to 22I).in a search for the critical value of A which
Just. kxept the (I-g)flame alighit.The ideawas that the transient
solution would predictltbe flame extinction if the critical
value of A was employed. Cases 24A to 241 were also performed
in the search for the eritical value of A within a wider
range. Although this eritical value of A was not obtained in
the few runs which were made, valuable experience was gained
and will be reported upon.; it establishes necessary found-
ation for_gyture use of the scluticen procedure.

The values of A used in Cases 21 to 25 are listed in table

(3-C).

The purpose of Case 21 was to demonstrate that the finite-

rate model when employed with a sufficiently small value of
A (i.e. éery fast reaction) will produce results which are

consistent with those of the infinite-rate model.

Cases 23 and 25 are hoth:for the transient study of two

different values of A, namely 10% and 1.5x10%,

It can be seen from table (3-C) that the temperature was
under-relaxed in Cases 21, 244 to 24I and 25. This practice
was necessary to dampen the oscillations of temperature as

This information was received through a telephone call . from

Dr. Cochran,
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will be discussed later.

Casec 26 .

In this case, the Prandtl number, gj, was increased to 0.7
to examine its effect on the solution by comparing the
results with those of the standard case where Op was 0.6,

After presenting the specifications of the studied cases,
we can proceed now to discuss the results. '
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" Experimental conds. ?ize ggmigiggratioq Tine-Step Information
‘ e ?igﬁ;g%&% Noz?ig)nia Xl (cm)l Yl(cm) _Jg§t (secs? to(secsﬂti(secs
0 2,8 o102 8. 4.5 .01 0, 1,
1 "t L1} "t 7" L1 " 12l
2 1t (1 " 1 1 i 1"
3 " " " " .003 ) 0. .4)
.01 ) .4 1. )
4 " " " 1 ool ) 0.0 0.4)
: o1 ) 0.4 1, )
5 " " " " .01 ) 0.0 .01 X
. 0002 ) 0.01 .308)
6 " H 1 " 0.1 0.0 1.
7 " " " 6,75 L0l 0.0 1,
8* " " " 2,25 " " i
9 m B L .5 tr L3l 1"
10 1l| " n " " 11 1]
11 1"t Tt L 11 LR 1 n
12 " T " 1] R " 113
13 11 11 1 It " mn (1]
34 t 1 " " 1 n "
15 1.08 " 4, " i " t
18 5.15 n 15. " " " "
17218 5.50 165 i5. 7.5 " o v
18 3.20 384 12. 40, " " B
20 2,42 . 372 8. 20, H " "
21 2.8 102 8. 4.5 .01 0. 1.03
22A-1 2,42 -372 8. 20. 01 0.0 .
23 1t " 1 1" 1t T 1
I 24A___h_1 " 11 LA 1 " 1 T
25 " 11 " n " " T
26 2.8 .102 8. 4.5 .01 0. 1.03

* - = L3
Error in Computation |
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Table (3-b)
® Number g IteraqUnder-relax-|Solution Order of
Case Grid tions per time-dation factorsDependent variables.
step for dependent
. yvarisbhles |
0 17 x 25 1 1.0 u,v,p,h,f,Rx,Ry
1 12 x 18 " ' " "
2 24 x 25 " " "
3 17 x 25 " " "
4 " " 1! 1t
5 ) 1" " 11
6 n L1 1 1
7 T i1 1 11
8 " jl 11t "
9 " 2 " "
10 " 4 . "
11 " 1 ’ 0.5 "
12 " " 0.25 "
13 " I 1.0 v,u,p,f,0,R B
14. n " " R ,h,Ry,f,v,u,p
15 " 2 " u,v,p,h,f,Rx,Ry
16 " " " " T
17 " " ‘ " "
18 " " R n
19 " " \ " "
20 " " B "
21 w 1 " "
2241 L " "
23 " 1 " "
24A-M L s " "
25 n 1 " "
26 " " " "

* . )
In 2ll cases, the grid lines were non-uniformly spaced. A geometrical

progression ‘was employed in both the x-and y-directioens.
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Table (3-¢)

Case.

Arrhenius
Constant A
(J/Kg mol/CK)

Number of
Iterations

at each storage

Undexr—relax—
ation. factor

for temperatt

ure

FTransient

10,

80

=3

Yes

H O oo B aw e

10,000
11,000
12,000
13,000
14,000
15,000
16,000
17,000
18,000

23

10,000

5o

24

mEDR R DY A cdlb

10.
" 75,000
8,000
10,000
11,000
12,000
13,000
14,000
15,000
16,000
17,000
18,000
19,000

100

25

15,000

100

Yes

|

%
For cases 22 and 24, a stage refers to a new value of A, while
it denotes the .steady (l-g) condition for cases 21,23 and 25,

Studied?
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Prandtl/Schmidt numbers of the variables
Case .
1 v P h £. Mey
0 - 25 . 1. 1. 1. .G .6 .6
26 1. 1. 1. 7 .6 .6
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4, ANALYSIS AND DISCUSSION OF THE RESULTS

4,1, Introduction
In this chapter, the results of the computations are pres-
ented and discussed by the aid of figures 4-a to 4-i and by
reference to ithe attached computer print-outs,

A11 figures, except Fig.4-h, compare the variation with time
in zero gravity of the flame length for the particular Casesg
studied,

From considerations of dimensional analysis, discussed in
detail in Chapter 5, it was found that the transient bch-
"aviour of the flame can be best studied by expressing the
flame length and time in 2 dimensionless form as K}L and £

respectively,

The definitions of %, and %  are:
~ Xpg _&_«—]
= Bf‘][ocﬁoua

ve[3e] ]

Here, Xft  is the flame length defined as the distance
along the axis of the fuel nozzle where the mixture-fraction

F is equal to for .

4,2, Besults and Discussion .

4.2°QGrid dependence
The dependence of the solution on the numbher of pgrid points

in the integration domain, is illustrated here by way of
the variation of Q;L with € . This is done for the
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three Cases 0, 1 and 2. The experimental conditions for
these cases are identical, The finite-difference grids
of the cases are 17 x 25, 12 x 18 and 24 x 25 respectively.

Figure 4-a displays the transient behaviour of ﬁ}L for the
three prids. It is demonstrated that for a fixed time-step
increasing the number of grid points in the domain of integ-
ration (i.e. refining the grid} leads to larger oscillations
of the predicted flame-length . These oscillations may be
linked with the numerical instability caused by the relativ-
ely large magnitude of the convection and diffusion terms

as compared to the transient in ?he finite-difference equation

when the time-step is large,

Effect of variation of the time step

Four Cases ( 0, 3, 4 and 6 ) are chosen to demonstrate the
dependence of the soluticon on the value of the time step.
These cases have the same experimental conditions; and the
parameters that affect the numerical solution are identical—
except for the time step. The time steps for the four cases
are .01, .003, ,001 and .1 sec, The variations of Xft

with ? for these cases are compared in fig. 4-b.

It is indicated in the figure that as we decrease the time
step {Cases 3 and 4), the oscillations of the predicted Q}L
are dampened, The result of-Case 5 (time step = 0002 sec)
is not plotted in this figure, 'since the variation of Q%L

is almost .identieal to that of Case 4, One may, however,
compare the respective print-outs of Cases 4 and § after a
time of 0.03 sec, It will then be clear that further ref-
inements in the time step have insignificant effects on the

solution,
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The band of the experimental results is also shown in
fig.4-6, The predictions of cases 3 and 4 are seen to be in
fair agreement,
On the other hand, when the time step becomes very coarse{Case )
large deviation from the meansurements is observed.
4.2.3.FEffect of varying the lateral width of the integration domain

The influence of increasing the lateral width, Yl, of the
integration domain, is shown by Fig. 4-c¢, where the trans-
ient behaviour of QQL is plotted for the two cases 7 and
0. In Case 7, ¥y is B0% greater than that of Case 0. It is
illustrated in the figure that the transient variation of

ﬁl Tor Case 7 differs slightly from that of Case 0.

We can compare the (l-g) fiame-lengths from the respective
print-outs of both cases, It is indicated that in Case 7,
the filame length is 3.8 cm which is ébout 5.5% longer than
that of Case 0 (3.6 cm).

" In the attempt of performing the computation for Case 8 —
which examines the effect of decreasing Yl’ 8 programming
error occured in specifying the radisl distance between the
7th and 8th y-grid lines; the radial distance from the axis
of symmetry cf the 8th line was less than that of the Tth.
This error produced an tunrealistic result: the flame length
after 1 sec in {0-g) became about 63% longer than that of
Case 0 (both cases have the same experimental conditions),
The location of the error is marked in the respective print-

out.

. It is expected, however, that when the grid is gpecified
‘properly, a reduction in the value of Y1 will produce only
slightly different results from that of Case 0,
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4,.2,4,Bffect of iterating at each time step
Fere we compare the transient %ft of three Cases (0, 9
and 10) which differ only in the number of iterations per-
formed at each time step. Figure 4-d displays the results

of the three cases. Two conclusions can be drawn.-

First, it is shown in the figure, and confirmed by the res-
pective print-outs, that increasing the number of iterations
from 1 to 2 eliminates the oseillations in the transient

flame-length.

Secondliy, it is clear thait doubling the number of iterations

from 2 to 4 produces identical results,. -

It is interesting to note that the effect on.the transient
Q}L of iterating at each time step is almost the same

as that of decreasing the time step (sgg figures 4-b and

A-d). It should be pointed out, however; that}iterating

twice at each time step is more cconomic than halving the

time step since iteration applies only to the three dependent

variables u, v and p whereas the finite-difference equations

are solved for all variables at each time-step.

4,2,5,Effect of under—relaxation.during the transient soclution
Three Cases (0, 11 and 12) are considered to study the effect
of under-relaxing the dependent variables during the trans-
ient mode of the solution, Again, the behaviour of 2@, is
chosen to illustrate the sensitivity of the solution to
the changes of the under-—relaxation factor «& (see section

3-2, Case 11).

Figure 4 - e compares the transient Eﬁ for cases Oland 11
where the values of o¢ are 1 and .5 respectively, As
compared to case O (&« = 1), Case 11 shows that the time-rate
of change of %&I is much smaller, and gradually decreases as

we march in time.
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0f the three values of % tested, the smallest (.25), case 12
produpes hardly any change in the flame length as time increases
(see the print-out). Although it is expected that under—
relaxation will slow down, to a-certain extent, the progress

of the redevelopment of the transient behaviour, the predictions
show severe slowing down. The cause requires further
inyesiigation.

4.2.6,Effect of changing the orxder of solving the eguailions
Here we examine the results of changing the order of solv-
ing the finite~difference equations of the dependeant var-
iables. The behaviour of the trans{ent flame~length for the
Cases 0, 13 and 14 is displayed in Fig 4-f. The crder of
golving the eqﬁations in each case 1g given in‘table (3-b)

and also in Fig. 4-f.

The order of solution in Case 13 differs from that in Case

0 in three respects: the equation of v is solved before that

of u,.... the equation of f is solved before that of‘'h, and—
the equation of Rj'is solved before that of R . Figure 4 exhib-
its identical predictions for” the transient in the two cases.

Now let us consider Case 14 and Case 0, In Case 14, the
equations of Rx’ h, Ry and f are solved bhefore those of v,

1 end p, whereas in Case 0, the equaticns of u, v and p
were solved before the other four, The result of this diff-
erence is displayed in Fig 4-£f, It is shown that the trans- .
ient fleme-length in Case 14 is lagging, but otherwise iden-
tical to, that of Case 0., This is’ a conseqguence of the fact
"that the flame length was determined (se2 Section 4.1) from
the values of the mixture fractioﬁ, £, which in Case 14

was salved for prior to the hydrodynamice variables, The values
of T, would be appropriate to the flow field (i.e, convection
- and diffusion) associated with the previous time-step. Thus,
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for example , after the first time step (.01 see) of the
transient mode, the flame length is that corresponding to
the (l-g) steady state conditions,

We can then concludé that the solution algorithm is stable
with respect to interchanges in the order of solving the

finite-difference eguations.

1
EBffect of varying the flow conditions

All the Cases (0 Lo 14) which have been examined up to this
point, had the same flow conditions (i.e., the same nozzle
diameter, 0,102 cm, and § me methane flow-rate, 2.8 cms/sec).
Now. the effect of varying these conditions is studied by
conmparing the results, Q}L vS. %, of six Cases (15 to 20).
The results of 8 Cases (15, 16 and 18) are plotted in Fig.
(4-g) which also includes the result of Case 9, The experim-
ental conditions of Case 9 were identical to that of Case O,
and in the computations of Case 9, the number of iterations
(2) at eazch time step was the same as for the above three

cases,

Case i5 examines the eifect of reducing the fuel velocity

at the nozzle exit (UO) on the flame length, The flew rate

of Case 15 is about 39% of that of Case 8, and both Cases
have the same nozzle diameter. Figure (4-zg) shows that g%L
for Case 15 is about 2/3 that of Case 9. Furthermore, the
Valug of the dimensional flame length, .0083 m, is in very
good agreement with measurements {Ref. ?). At the end of

the transient (0-g) mode, however, the predicted flame length

_is smaller than that for (l-g) condition; this result is in

contradiction with experiﬁent. More investigationsare regulred
to diagnose'the scurces of discrepancy inthis relatively low
Reynolds number Case. - ’

In Case 16, the effect of increasing U  on the flame length
igs studied. The flow rate of Case 18 is about 84% larger
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than that of Case 9, and both Cases have the same nozzle
diameter. Pigure (4-g) demonstrates that,-as expected, %}L
at (1-g) condition is larger for Case 16 than for Case 9,
Similar behaviocur is alsc depicted throughout the transient

mode.

In Case 18, both the fuel flow rale and the nozzle diameter
were respechtively 96% and 62% larger than those of Case 9,
The trangient behaviour of i}b for the two Cases is displayed

in Fig (4-g).

Two conclusions can be made from the results of Cases 8, 15,
18, 17 and 18: '

The predicted values of%&for the range of flows studied are
always less ‘thanr 3 (see Fig d4-g), This is in agreement with
the results of dimensional analysis discussed in detall in

Chapter 5.

The predicted transient behaviour of‘ Q}L at (0-g) for all
cases indicates that up to a value of T of about 1.5, ﬁ}L
decreases as t increases, then ?}L starts to increase until
it reaches a maximum value. This Q;L value is, except for
Case 15, larger than its value at (1-g) condition.

The computations for Cases 19 and 20 met some difficulty. In
these two cases, the nozzle diameter was respectively about

8.8 and 3.7 times. the diameter for the standard Case (0).This,
as explained earlier in Cﬁapter 3, réquired increasing apprecia-—

'bly (10 and 5 times) the lateral width of the integration

domain, At the outer cyclindrical boundary of this domain,
the radial velocities were caliculated from the values of

the entrained mas$s flow rates. These rates wers based on the
solution of GENMIX program (see Section 2.1). Although
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for Cases 0 to & and 9 to 14 (nozzle diameter of ,102 cm,

and domain width 4,5 cm) the solution wés not sensitive to
the variation of these entrainment rates (see Section 2,1),
it is evident from the print-outs of Cases 19 and 20 that
the solution becomes sensitive to their values when Y1 is
inereased appreciably, This is demonstrated in the predicted
distributions of the u-veloecity at (l-g) condition of the
twe Cases. The respective print-outs show large negative
u—-velocities {recireculation) in the field, associated with

2 sudden acceleration aleng the axis and close to the nozzle
exilt. This is attributed to insufficient entrained fluid at
the c¢ylindrical boundary., Detailed investigation of this

problem is required,

4.2,8.Bxamination of the chemical-reaction models
The results obtained from the two chemical-reaction models
presented in detail in Section 2.2.4, are discussed here by
comparing Cases 0 and 21, The two Cases are identical in both
the exﬁerimental conditions and the numerical aspects of the
solution except for the reaction model employed. Case O
employs the infinite-rate model while in Case 21, the finite-
rate model is used with small value (10.)of the Arrhenius
constanl to simulate a rélatively fast reaction,.

The results of both cases are displayed in Fig. (4-h} where
the variaticnsof e with distance along the nozzle axis
are plotted. The figure shows, as expected, that.the rate

of decay of me, along the axis is faster in the infinite-rate

model than in the finite- rate one.,

One can also compare the temperature distributions in the
respective print-ocuts of the two cases. At a given point in
the flow, the temperature predicted by the finite-rate model,
as one would expect, is -less than or equal to that of the in-

finite rate model.
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?he transient behaviour of the flame lenpths in both cases
are also virtually identical (see the print-auts),

4.2,9.The flame extinction study
‘ The search for the reaction-rate constants that produce

flame extinction must, of course, be accompanied by a suit-
able criterion for extinction; one such, is that the maximum
temperature in the flow field be less than a specified tem-
perature (e.g. IOOOOK). Although we were, in our search, un-
able to obtain extinction, we can report a definite trend
which indicates that a widér range of search for the reaction-
rate constants will produce the values suitable for the flame

extinction,

It should be peinted out here, that a problem was encoun-
tered, during the extinction study, with the convergence

of femperature. We can summarize the experience gained in
treating this problem-by stating that the slower the reaction-
rate, the more under-relaxation is required to achieve ____
convergence {see table 3-c for the values ofof).

4.2,10,Effect of varying ¢y
| The two Cases 0 and 26 are compared to study the effect of
O, on the solution, In Case 26, ¢, has a value of 0.7 as
compared to 0,8 for Case 0; the two cases are otherwise

identical.

The transient variation of ﬁg‘ for both cases are plotted
in Fig (4-1i). Obviously, the values of the P§ number play an
impertant role in the solution of laminar diffusion-~flames.
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5 GENERAL DISCUSSION AND CONCLUSIGENS

5.1 Comparison of Predicted Resulis with Expectations
Based on Dimensional Aﬁa;ysis

Vhen a laminar steady jet is injected into an
atmosphere at rest, the rate of flow of injecied-plus-~
entrained fluid at a section distant x from the

nozzle is equal to 8wux, where U is the fluid viscosity
(presumed uniform) and buoyancy effects are absent.
[Note that this result, suprising because it is guite
independent of the rate of injection, is a consequence
of boundar§~layer theory; but this theory provides a
good approximation in the Reynolds-number range in

question here.]

Now 1kg of methane requires sbout 18kg of air far its
complete combusticn. We can therefore suppose that,
approximately, the flame length will be given by

. . 2 . .
_equatlng 8num§f1 to 16 times pOquDO /4; thus:

Yoz (7Y () = #
Xte = (Do, Defolic) 2 (5.1-1)

Aétually the numerical value of this dimensionless
flame length will differ from 1/2 because of:-

(a) the action of buoyancy;

A{b) viscosity increases within the flame;

{¢) incomplete mixing of the fluid at any section;
(4) elliptic effects;

(e) chemical-kinetic effsects.

Factors (a) and (b)) tend to diminish the dimensionless



- B2 -

flame length, while factors {(c), {(d} and, probadbly, (e)
tend to. lengthen it. The result is that (5.1-1) can be
expected to pive good order—of-magnitude estimates.

The flame lengths predicted by the EGOMAC computer
program are indeed of the order of magnitude indicated
by equation (5.1-1); and they agree with expectations
in showing that the dimensionless flame length is
smaller, the greater the influence of buoyancy. The
dimensionless quantity representing this influence is
of course the TFroude number which, for present
purposes, can be conveniently defined as:

. .
U : (5.1-2)

Fz _———
G Reypical
Since we mlght as well define our typical height as
the flame lengih given by the foregeing simple theory,

we conclude:

. 2ud .
= Zhe (Do ~ (5.1-3)

The trénsient behaviour can be expected Lo depend
upon a non-dimensional time ¥, for which the
normalising quantity is the typical height. divided by

the injection velocity; thus:
b

_2" _ Q'ifuo

= 5 Dcﬁ,uc)

(5.1-4)

We therefore expect that the results for the transient
flame length can be represented by way of the following
relation between dimensionless groups:

. Ko = £(F, &) (5.1-5)

with minor additional effects of Reynolds number,
chemical kinetics, and changes in the temperature lsvels
of the injected methane and the surrounding air.
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The numerical predictions contained in the present
report do confirm this expectation.

5.2 The Influences of Grid and Other Features of the

Numerical Sclution Procedure

When a phenomenon of this kind is computed numeriecally,
the procedure itself introduces influences which can

be expressed thus:

Koz f(5 T, 68 Tman | dmax | Mo | Ny, Na, Nig, ==~ )
H P by Do FO“UDC (5.2-1)

This expression indicates that:-

. ) S
e the dimensionless time step, 6L, influences the
result;
) the size of the domain of integration, represented
' by rmax/Do and xmaxfxtypical’ has some effects;
e  the numbers of grid lines in each of the two

co-ordinate directions, as well as departures ifrom
nniformity of spacing, alsoc affect the predicted
flame length;

° the number of iterations per time step, and other
details of the procedurs such as the order in
which the equations are solved at each time step,
all have their influence on the computed results.

Of course, with a satisfactory prediction procédure, 6%,
Nr, Nx etc are z2ll given such values as render their
influence small; but what those wvalues are can be

established only by systematic exploration,

'The investigation reported in the present paper
represents only an initial phase of the exploration.
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However, it is evident that sufficient information has
been accumulated to enable the next phase to be
planned successfully.

5.3 The Influences of the Properties Presumed

If the grid were Tine enough and the time step
extremely small, we can be sure that the solution of
the finite-difference equations would be identical with
that of the differential equations; whether it wculd
agree with experimental data is, however, an entirely

different matter.

In the EGOMAC computer program as currently constituted,
the formulaticns of the thermodynamic, transport and
-chemical-kinetic properties are simple cnes, 28 is
entirely appropriate to an exploratory investigation.
Thus, the heat-conduction and materiali-diffusion
processes are represented by constant Prandtl and
Schmidt numbers; and the complexities of the real
chemical-kinetic processes are all hidden within the
two fres constants of an Arrhenius reaction-rate '

expression.

Because of this, and of the fact that there are many
more parameters to vary even within this limited
conceptual framework than could be investigated
during the present explorations, it is not surprising
that there are disagreements between the predictions
made by the EGOMAC computer program and the available
experimental data. Indeed, it is very gratifying that
the agrsement is so gocd, both gualitatively and

gquantitatively.

Vhat is now needed is a two-part investigation in which,
first, the disposable constants of the present model

are varied so as to optimize the agreement over the
whole range of conditions, and, secondly, even better



- B5 -
.
agreement is sought through the introduction of
refinements to the model. These refinements should
include more realistic formulaticns for thermodynamic
and {ransport properties and for reactionxkingtics.

5.4 The Influences of the Boundary Conditions

Problems of this "elliptic'" kind require specification
of boundary conditions at all boundaries of the domain;

vet these are rarely known.

In the EGOMAC computations, a fixed-rate-of-entrainment
boundary conditicn has been imposed, the entrainment
rate being chosen as that which a simplified analysis
dictates. Although there is no reason to suppose

that the nature of this boundary condition significantly
affects the computation in the central physically-
interesting region, a further investigation is needed
before the point can be established with certainty.

5.5 Computationzl Ecopomy

Because of the low limit on available funds for this
project, no program development was dene. The EGOMAC
therefore does not contain all the devices for
economising computer time and storage which are
available in more recent CHAM codes, ;nd in others

under. development.

P

It should therefore be mentioned that the EGOMAC code
is rather expensive to run. TFor a given numerical
aceuracy, improvements could be incorporated which
would reduce its running costs to below 50% of the

present level.
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5.6 Recommendations for Further Work

This investigation has firmly established that
‘computations of the kind performed by EGOMAC are
potentially capable of correctly predicting the
transient buoyant lapminar diffusion-flame process that
formed the centrepiece of the project; and of course
it confirms belief that many other f£flame and flow
processes can be predicted by extensions of thg method.
To this extent, the investigation can be counted as

successful,
However, the success requires to be exploited; and, of
the various directions in which future work can go,

the following appear to be especially fruitful:-

{2) Improvements of computational economy

Because it is now desirazble to exercise the EGOMAC code
extensively, the cost of doing so should be reduced by

' measures directed to improving computational efficiency.
There afe.maﬁy of these available; and they will become
especizlly valuable when finer grids are employed in
the interests of improved accuracy.

(b) Optimisation of physical inputs

.If a closer fit is required between the pre@ictions and
measurements for the transient methane-air flame, it
will be necessary to optimise the various inputs. For
example, the assumption of a single uniform Schmidt
number for diffusion of all components is certainly not
correct; it could be replaced by assuming individual
Behmidt numbers for each component; and of course the
Stefan-Maxwell equations could be introduced as a more

realistic alternative.

If extinction phenémena are to be realistically
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predicted over a range of experimental conditions,
there is'no doubt that an appreciably more couplex
chemical-kinetic model will be needed than the present
one. Although it would have been possible, had more
funds and time been available, to extend the search
for optimum constants for the Arrhenius eguation, this
would be hard to justify until the physical properties

have been optimised.

(¢) Employment of simpler computational schemes

It is possible, with hindsight, to recognize that the
EGOMAC computer code is too complex and expensive for
some of the tasks of interest to the sponsor. Thus,
since the parabeolic equations represent a good
approximation to the steady-state situation, and since
such equations can be sclved (eg by way of GENMIZ, Ref
8) more expeditiously than the elliptic ones, it would
"make sehse to optimise the transport-property inputs by
an extensive investigation of steady-state flames.

{d) Application to different systems

Now that EGOMAC has shown its potential for the
~ methane-air flame, it can evidently be employed with
some confidence for other flame systems also. Thus:

o The reactants can be changed.
o The-boundary ceonditions may be altered.
e Gravity may vary with time in accordance with a

different program from the all-or-nothing
prescription of the present example.

6 Turbulence may be introduced.
. 1

e NOX reactions may be studied.

e Ete.

Further, it should not be Torgotten that EGOMAC is just
one mexber of a family of computer codés, which includes

»
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those capable of handling three-dimensional unsteady

flames,

5.7

(a)

(b

{c)

(d)

- (&)

Summary of Conclusions

The EGOMAC computer code has been shown to be

capable of meeting the sponsor's requirements,

Mapy more computer runs have been made than were
reqﬁired'by the client; and their results axré

reported and summarised in this document.

It has been shown that the experimental behaviour
can pe reproduced with fair aeccuracy, provided
that the time step is sufficiently short.
Iteratiofi at each time step also improves
accuracy.

Further improvement‘of agreement between
predictions and experiment can also be achieved
by modification of physical-property data within

reasonahle limits.

Exploitation of ihe success requires further work
in respect of;-
¢ Improvements to computational efficicncey.
e Optimisatior of physical inputs,
¢ Conduct of supporting investigations by way
of simpler computer codesa

e Extension to different and more complex flame

systems.
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NOMENCLATURE
Symbol

a

x? ay-l-’ a’y
A
JA., B

J’
AP, Ax+) Ax-' AvH
Cj,n
D
Du. N\
E
Eu’ Y

f

g
h
H

i

I, J

K, L
m -
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Meaning

radiation abscrption coeff-
icient
cell-face areas

constant in the Arrhenius
reaction~rate expression

coefficients in Sutherland
law for viscosity of species
3

coefficients in the finite-
difference equations
coefficients in the express-
ion for enthalpy of species
3 .

nozzle diameter
pressure~term coefficients

irn the finite-difference eg-
uwations for u and v

black bcody emnissive power
coefficients in the correction

formulae for u and v
mixture fraction
gravitational aceeleration
enthalpy

lower value of the heat of
formation of methane

“stoichiometric ratio
radiative heat fluxes in the

pogitive and negative r dir-

©ection

radiative heat fluxes in the
positive and negative x dir-
ection

mass fraction
b
molecuiar weight
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mass source at grid node P

static pressure

radial distance

flame radius

radiation flux quantities
universal pas constant

scattering coefficient for
radiation

source term

coefficients in the linear-
ised source term

time

temperature

axial velocity

radial velocity “
axial distance

flame length

rddial distance

counstant in the Arrhenius
reaction rate expression

under-relaxation factor
diffusion coefficient

cell dimensions

laminar wviscosity

density

Prandtl/Schmidt number
Stefan - Boltzmann qpnstant

‘general dependent variable

mass flow rate of entrained
fluid along eylindrical boundary
up to x .



Subescript

ca,,
du

X+, Xep ¥+, Y-
p .

Q
o0

Superscripts
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Pertalning to.

carbon dioxide
fuel (methane)l

water vapor

species j

nitrogen

oxygen
grid node P
stoichiometric conditions
neighbourning grid nodes
variable 0§,

conditions at the nozzle
ambient conditions

" Pertaining to

conditions at the present
time step

conditions at the previous——
time step

velocities u and v

corrections to estimated
pressures and veloclties

estimated quantﬁties
mean values within the £lame
dimensionless quantity
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APPENDIZX

THE PRINT-QUT FORMAT

This appendix is intended as an aid to the reader of the

computer output which accompanies this report. At each' time

step or after each iteration, several quantities are print-

ed, and these are now to be individually discussed.

TiME - The period during Wwhich the flame has been subjected
to zero-gravity conditions, In some of the-cases,e.g.
Case 0, iteration is at first employed to obtain a
{1-g} converged steady-state solution and for this
gituation TIME = 0. In other cases a converged steady-
state solution is stored ( as a permanent file on
computer disc storage), and is used to provide ipitial

conditions.

LFLAME—The flame length along the axis of symmetry. The
flame envelope, or surface, is defined to be the
lecus of points, in the flow field, for which the
mixture fraction.obtains the sioichoimetric wvalue,

- The Tlame length is determined by interpolation
between appropriate grid nodes at the axis of

symmetry,

WFLAME-The maximum width of the flame, This gquantity is
determined by finding the width of the flame envel-
ope along all the grid lines parallel to the y-axis.
For any given grid line the envelops width is cobtained
‘by interpolafion between the appropriate grid nodes.
The maximum of these envelope widths is set to
WFLAME, | -

U AT LF--The axial velocity at the tip of the flame, This
' quantity is also determined by ianterpolation,
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The mixture fraction is printed out at 8 locations along
the axis, These locations are taken as fractions and
multiples of the flame length (e.g, at x = 0,5 x LI')

The remaining quantity which is printed out at each time
step is the temperature at the nodal points along the
axis and along the grid line which corresponds to the
maximum width of the flame envelopse.

Finally more comprehensive print outs are given at the
following instants.

t+ = 0,0,0,03, 0,1, 0.3, 0.5, 0.7, 1.0 secs,

The variables printed out are:-

U, VMg, h, Mens Moger T, RXJ Ry,pp, each at approximately
100 points in the flow field.
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