

COMBUSTION OF HYDROGEN-AIR JETS

 IN LOCAL CHEMICAL EQUILIBRIUM(A Guide to the CHARNAL Computer Program)
by D. B. Spalding, B. E. Launder, A. P. Morse, and G. Maples

Prepared by
FLUID MECHANICS AND THERMAL SYSTEMS, INC.
Waverly, Ala. 36879
for Langley Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JUNE 1974

*For sale by the National Technical Information Service, Springfield, Virginia 22151
List of Contents
Page

1. Introduction 1
2. The Mathematical and Paysical Model 2
3. Details of the CHARFIAL Computer Program 6
4. Discussion of Sample Predictions 21
5. Suggestions for further Extensions and Refinements of CHARNAL 23
6. References 25
7. Nomenclature 25
Taíles 28
Figures 30
Appendix 1. Listing of Foriran Variabies 42
Appendix 2. Listing of CHAR!AL 48

COMBUSTION OF HYDROGEN-AIR JETS
IN LOCAL CHEMICAL EQUILIBRIUM
(A Guide to the CHARNAL Computer Program)
by
D. B. Spalding, B. E. Launder, A. P. Morse and G. Maples

of
Fluid Mechanics and Thermal Systems, Inc.
Route 2, Box 11
Waverly, Alabama 36879

1. Introduction

The computer program CHARNAL (Calculator of Hydrogen-Air Reactions for NASA Langley) generates finite-difference predictions ōf türbulent, coaxial hydrogen-air jets undergoing combustion. The jets may be free, as indicated in Figure la (in which case the external stream is assumed to extend to arbitrarily large radius from the symmetry axis) or enclosed as in Figure 1b. At any point in the flow the mass fraction of the constituents of combustion is found on the assumption that chemical equilibrium prevails, the constituents being $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}, \mathrm{H}, \mathrm{OH}$ and N_{2}.

The present report details the mathematical and physical basis of CHARNAL, discusses some sample predictions and provides a guide to the computer program itself. Section 2 is concerned with the first of these aspects: the basic conservation equations of momentum, stagnation enthalpy and chemical species are presented first and these are followed by a description of the turbulence and combustion models employed. A user's guide to the computer program appears in Section 3 while definitions of FORTRAN symbols and a listing of the program itself are contained in the Appendices. Thereafter, Section 4 presents and discusses the outcome of some test cases and, finally, Section 5 suggests some directions that further developments to the CHARNAL program might take.

2. The Mathematical and Physical Nodel

2.1 The Mean Flow Conservation Equations

CHARNAL calculates the steady state distributions within the jet of mean streantise velocity, temperature and mass fraction of elenental hydrogen by reference to the conservation laws of momentum, energy and chemical species. These laws are expressed in terns of the following set of parabolic partial differential equations expressing respectively the trarisport of streanmise mementum, stagnation enthalpy and hydrogen mass fraction.

$$
\begin{equation*}
\rho u \frac{\partial u}{\partial x}+\rho v \frac{\partial u}{\partial r}-\frac{1}{r} \frac{\partial}{\partial r}\left(\mu_{t} r \frac{\partial u}{\partial r}\right)=-\frac{d p}{d r} \tag{2.1-1}
\end{equation*}
$$

$$
\begin{align*}
\rho u \frac{\partial \hat{h}}{\partial x} & +\rho v \frac{\partial \hat{h}}{\partial r}=\frac{1}{r} \frac{\partial}{\partial r}\left(u_{t} r \frac{\partial \hat{h}}{\partial r}\right)+\frac{1}{r} \frac{\partial}{\partial r}\left\{r \left[\left(\mu_{t}-\Gamma_{h}\right) \frac{\partial}{\partial r}\left(u^{2} / 2\right)\right.\right. \tag{2.1-2}\\
& \left.+\left(\Gamma_{k}-r_{h}\right) \frac{d l}{d r}+\Sigma_{j}\left(\Gamma_{j}-\Gamma_{h}\right) h_{j} \frac{\partial m_{j}}{\partial r}\right]
\end{align*}
$$

$$
\begin{equation*}
\rho u \frac{\partial f}{\partial x}+\rho v \frac{\partial f}{\partial r}=\frac{1}{r} \frac{\partial}{\partial r}\left(\Gamma_{m} r \frac{\partial f}{\partial r}\right) \tag{2.1-3}
\end{equation*}
$$

The mass fraction of elemental hydrogen, f, is used as a variable for the reason that, unlike H_{2}, even during chemical reaction it remains a conserved property. The method of determining the individual chemical constituents of the flow is described in Section 2.3.

The set of partial differential equations is completed iby the continuity equation in wich the streamise and radial velocities are connected by:

$$
\begin{equation*}
\frac{\partial}{\partial x} \rho u+\frac{1}{r} \frac{\partial}{\partial r}(\rho v r)=0 \tag{2.1-4}
\end{equation*}
$$

In fact CHARNAL solves the parabolic transport equations čast in a Von lifises system of coordinates (i.e., x and stream function as independent variables). This transformation has the effect of eliminating the radial velocity v from the equations, and, hence no explicit recourse needs to be made to equation (2.1-4).
\therefore The temperature of the mixture, T, is obtained from known values of h, u and the mass fractions of the chemical constituents of the mixture from the expression:

$$
\begin{equation*}
T=\frac{\left[\hat{h}-u^{2} / 2-k-\Sigma_{j} m_{j}\{\Delta h f-\Delta h\}\right]}{\Sigma_{j} m_{j} \bar{C}_{p j}} \tag{2.1-5}
\end{equation*}
$$

and $\bar{C}_{p j}=\frac{1}{T} \int_{0^{\circ} k}^{T} C_{p j} d T$

2.2 The Turbulence liode 1

Thie effective turbulent transport coefficients $\mu_{t}, \Gamma_{h}, \Gamma_{i n}$ and Γ_{k} are determined by means of the $k \sim \varepsilon$ model of turbulence :hich has been presented and anplied to numerous turbulent free shear flows in Reference [2]. According to this model the magnitude of the viscosity depends only on the local values of the turbulence kinetic energy, k the dissipation rate of turbulence energy, ε and the fluid density. They are connected by the formula:

$$
\begin{equation*}
\mu_{t}=C_{\mu} \rho k^{2 / \varepsilon} \tag{2.2-1}
\end{equation*}
$$

The quantities k and ε are found by way of the following pair of transport equations which are both similar to (and solved simultaneously with) those governing the mean flow:

$$
\begin{align*}
& \rho u \frac{\partial k}{\partial x}+\rho v \frac{\partial k}{\partial r}=\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{\mu_{t}}{\sigma_{k}} \frac{\partial k}{\partial r}\right)+\mu_{t}\left(\frac{\partial u}{\partial r}\right)^{2}-\rho \varepsilon \tag{2.2-2}\\
& \rho u \frac{\partial \varepsilon}{\partial x}+\rho v \frac{\partial \varepsilon}{\partial r}=\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{\mu_{t}}{\sigma_{E}} \frac{\partial \varepsilon}{\partial r}\right)+\frac{C_{1}}{k} \varepsilon \mu_{t}\left(\frac{\partial u}{\partial r}\right)^{2}-\frac{C_{2} \rho \varepsilon^{2}}{k} \tag{2.2-3}
\end{align*}
$$

The quantities $C_{\mu}, C_{1}, C_{2}, \sigma_{k}$ and σ_{ε} are dimensioniess and are given the constant values belcw

C_{μ}	C_{1}	c_{2}	σ_{k}	σ_{ε}
.09	1.43	1.92	1.0	1.3

These values are the same as those recommended in [2]. Equations (2.2-2) and (2.2-3) do not provide a physically exact prescription for finding k and ε. Such a prescription is not possible because the exact equations for k and ε contain correlations whose magnitude is not directly ascertainable. These correlations are therefore approximated in terms of k, ε and the mean velocity field; the approximated terms in (2.2-2) and (2.2-3) are the ones with the empirically determined coefficients. Models of the above kind, while being sufficiencly simple not to affect computer costs significantly, have been found (see for example, references [2] and [3]) to possess considerable width of applicability, precisely the same model predicting features of both wall and free turbulence. It is probably the best model available at present for the kind of shear flows that CHARNAL is designed to compute.

The transport coefficients in the hydrogen-element and stagnationenthalpy equations are given by

$$
\begin{equation*}
\Gamma_{h} \equiv \mu_{t} / \sigma_{h} \quad ; \quad \Gamma_{m} \equiv \mu_{t} / \sigma_{m} \tag{2.2-4}
\end{equation*}
$$

In the free jets and in the confined jets (provided the jet has not spread to the pipe vall)

$$
\begin{equation*}
\sigma_{h}=\sigma_{i n}=0.7 \tag{2.2-5}
\end{equation*}
$$

Once the jet has filled the pipe the effective Prandtl/Schmidt number is obtained from the formula:

$$
\begin{equation*}
\sigma_{h}=\sigma_{m}=0.95-.45(y / R)^{2} \tag{2.2-6}
\end{equation*}
$$

where y is distance in the radial direction measured from the pipe wall. The above variation, proposed by Rotta [4] and used by several workers since, is generally in accord with experimental data of the turbulent Prandtl number in fully-developed pipe flow. Note that because the same numerical values are assigned to Γ_{h} and Γ_{m}, one of the source terms in equation (2.1-2) vanishes.

2.3 The Combustion Model

The equilibrium composition of the hydrogen air mixture can be calculated by reference to the set of reversible reactions:

$$
\begin{align*}
& \mathrm{H}_{2} \rightleftharpoons \mathrm{H}+\mathrm{H} \tag{2.3-1}\\
& \mathrm{O}_{2} \rightleftharpoons \mathrm{O} \rightleftharpoons \mathrm{O} \tag{2.3-2}\\
& \mathrm{OH} \mathrm{H} \rightleftharpoons \mathrm{O}+\mathrm{H} \tag{2.3-3}\\
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}+\mathrm{H} \tag{2.3-4}
\end{align*}
$$

The relative mass fractions of the above constituents are found by presuming that chemical equilibrium prevails at each point in the flow. Thus:

$$
\begin{array}{ll}
m_{H_{2}} / m_{\mathrm{H}}^{2} & =K_{1} \\
m_{0_{2}} / m_{0}^{2} & =K_{2} \\
\mathrm{~m}_{\mathrm{OH}} / m_{0} / m_{\mathrm{H}} & =K_{3} \\
{ }_{\mathrm{H}_{2} \mathrm{O}} / \mathrm{m}_{\mathrm{H}} \mathrm{~m}_{\mathrm{OH}} & =K_{4} \tag{2.3-8}
\end{array}
$$

Where the K's are functions of temperature and pressure. In addition we have by definition
and

$$
\begin{equation*}
x \equiv m_{0}+m_{0}+\frac{H_{0}}{H_{H_{2} \mathrm{O}}}\left(m_{H_{2} \mathrm{O}}\right)+\frac{H_{0}}{H_{O H}}\left(m_{O H}\right) \tag{2.3-9}
\end{equation*}
$$

In the above equation set, the quantities f and X are to be considered know: f is found from the conservation equation for total hydrogen (equation 2.1-3) and X is simply OFAC (1-f) where OFAC is the mass fraction of oxygen in the external streani. The equilibrium "constents". $K_{1} \ldots \ldots K_{4}$ are functions of temperature and pressure. CHARNAL incorporates the dependencies proposed by HcBride [5].

Equations (2.3-5) - (2.3-10) thus provide a set of six equations in the six unknowns $\mathrm{m}_{\mathrm{H}_{2}}, \mathrm{~m}_{\mathrm{H}}, \mathrm{m}_{\mathrm{H}_{2}} \mathrm{O}^{\prime}, \mathrm{m}_{\mathrm{OH}}, \mathrm{m}_{\mathrm{O}}, \mathrm{m}_{\mathrm{O}_{2}}$. The equations are non-linear (indeed, highly non linear for regions of flow where the fuel/air ratio is nearly stoichiometric); their solution must therefore proceed iteratively. The solution technique adopted is described in Section 3-4.

The mass fraction of N_{2} (which is considered to be entirely inert) is simply ($1-X-f$).

Because the flow is turbulent, the level of hydrogen and of other variables will be continuously fluctuating about their mean values. The magnitude of the mean square hydrogen fluctuations, g, is found from the following transport equation developed and tested by Spalding [6]

$$
\begin{equation*}
\rho u \frac{\partial g}{\partial x}+\rho v \frac{\partial g}{\partial r}=\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{\mu_{t} r}{\sigma_{g}} \frac{\partial g}{\partial r}\right)+c_{g 1} \mu_{t}\left(\frac{\partial f}{\partial r}\right)^{2}-c_{g 2} \frac{\rho \varepsilon g}{k} \tag{2.3-11}
\end{equation*}
$$

where the constants $\sigma_{g}, C_{g 7}$, and $C_{g 2}$ are assigned the values of $0.7,2.8$ and 2.0 respectively. Solution of the g equation enables the region of the flame over which stoichiometric conditons occur to be calculated. The inner boundary to this region occurs at a radius from the axis where $f-g^{\frac{1}{2}}=$ $f_{\text {stoich }}$ ard the outer boundary where $f+g^{\frac{1}{2}}=f_{\text {stoich }}$. The predicted path of these two surfaces for a hydrogen jet burning in an air stream is shown in Figure 10.

3.0 Details of the CHARNAL Computer Program

CHARNAL is a custom-developed version of the Patankar-Spalding PASSA program which, in turn, is a newer, more economical and flexible version of GEMIIX published in Reference [1].

Section 3.1 below gives a brief summary of the general Patankar and Spalding method of solving the boundary layer equations. Section 3.2 lists the major differences batreen CHARNAL and the original GEinIIX progran, while Section 3.3 discusses in detail the listing of the present program (which is to be found in Appendix 2). Section 3.4 is devoted to
a discussion of subroutine LAMGLEY, which has been developed exclusively for the current work. Finally Section 3.4 gives overall instructions for the running of the program, in particular the input information that the user must provide.

3.1 The Patankar-Spalding Boundary Layer Procedure

The main features of the computational method are as follows:
(i) The primary differential equations (i.e., the transport equations for u, \hat{h}, f, g, k and ε) are transformed so that the independent variables are the longitudinal distance, x and the dimensionless stream function, ω defined as:

$$
\begin{equation*}
\omega \equiv\left(\psi-\psi_{I}\right) /\left(\psi_{E} \cdots \psi_{I}\right) \tag{3.1-1}
\end{equation*}
$$

where $\dot{\psi}$ itself is obtained from the relation,

$$
\begin{equation*}
\frac{\partial \psi}{\partial y}=\text { pur } \tag{3.1-2}
\end{equation*}
$$

Subscripts I and E refer respectively to tive "inier" and "cuter" boundaries of the flow; for axisynmetric flows the inner surface is all:ays the one nearer the symmetry axis. The resulting differential equations are all of the basic form,

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+(a+b \omega) \frac{\partial \phi}{\partial \omega}=\frac{\partial}{\partial \omega}\left(c \frac{\partial \phi}{\partial \omega}\right)+d_{2} \tag{3.1-3}
\end{equation*}
$$

Where the terins on the left-hand side represent convection by the nean flow and those on the right-hand-side express respectively the diffusion and source of the entity ϕ. The coefficierits, (a) and (h) are functions of the entrainment rates, whilst (c) involves the effective diffusion coefficient.
(ii) The differential equations are expressed as finite-difference equations, connecting tire values of the dependent variables which prevail at the intersection points of a grid defined by lines of constant x and ω. These finite-difference equations are formed by integrating the differential equations over small control volumes associated with each grid node.
(${ }^{\text {(iii) }}$ The integration proceeds by "marching" dounstream, the values of the variables at grid peints at the next downstream station being calculated from those at tite upstream station and placed into the array locations occupied by the latter. At each forward step, new values are ascribed to $\|_{E}$ and ψ_{I}, the stream functions at the grid boundaries. These values, together with the continuity equation, determine the geometrical location of the boundaries; and this determination is so arranged that the boundaries enclose all the fluid having a significant value of the shear stress (or other flux) without enclosing appreciably more than this. This feature allows the method to achieve good numerical accuracy without employing an excessively fine grid.
(iv) The finite-difference equations are formulated in an implicit manner, and solved by means of the well-known algorithm for tri-diagonal matrices. This allows large forward steps to be made without instability. The equations are linearized, upstream values of the transport properties being supposed to prevail over the whole of the forward step.
(v) The source terms are usually (but not necessarily) expressed as linear functions of the upstream and downstream values of the dependent variables. For example in the turbulent kinetic equation,

$$
\begin{equation*}
\text { Source of }(k)=\left[\mu_{t}\left(\frac{\partial u}{\partial y}\right)\right]_{U}^{2}-\left[(\rho \varepsilon / k) U k_{D}\right. \tag{3.1-4}
\end{equation*}
$$

where the subscripts I and D denote upstream and downstream values. This practice allows large forward step sizes to be used without the onset of inaccuracy or instability.

For further information on the general structure of the solution procedure the reader is referred to Reference [1].

3.2 New and Improved Features of the PASSA family of programs

PASSA programs retain the general width of applicability of the basic procedure, but are arranged to be more economical in terms of both execution time and storage capacity. The principal differences between the new method and its predecessor may be summarized:
(i) in PASSA, the finite-difference equations are solved sequentially. That is, for any variable, the coefficients of finite-difference equations are formed and the equations solved before moving on to the next differeritial equation. This contrasts with the former procedure where the coefficient for all the differential equations were stored simultaneously and then the matrix was inverted for each equation in turn.
(ii) The PASSA program does not nlake use of "slip nodes" in the formulation of the difference equations at the boundaries. In the earlier program, these nodes were eimioyed to obtain the correct gradients of the dependent variables at the edge regions. PASSA treats the nodes near each flow boundary in exactly the sane way as the interior nodes.
(iii) In PASSA all diffusivities and gradients of the dependent variables, such as the viscosity and the velocity gradient are evaluated at the actual grid nodes, whereas in the earlier program these quantities were evaluated at the edges of the control volumes (which by definition were midray between individual nodes in terms of ω). PASSA also contains the option of using castellated profiles instead of linear variations of ϕ between the grid nodes.

3.3 Details of the CHARNAL Program

A flow diagram for CIIARNAL is provided in Table 1. The program consists of a IAPIN program and a number of subroutines of which the most important are AUX, STRIDE, OUTPUT and LANGLEY.

3.3-1 The liAIN Program

liAIN contains the starting and stopping points of the computation and conmunicates directly or indirectly with all the other subroutines. It comprises twelve "chapters", each performing a specific function in the computational procedure. The most important of the operations are gentioned below:

Chapter 1. Values are assigned to various indices which control aspects of the computation throughout the program. The main categories are:
(i) the specification of the number of grid nodes and differential equations to be solved.
(ii) the nature of the flow boundaries (wall, free boundary or axis of symmetry)
(iii) the control of input, and
(iv) the designation of the flow type (number of chemical species, nature of initial conditions, etc.). This topic is discussed in more detail in Section 3.4.

Chapter 2. This chapter selects the primary dependent variables and auxilary quantities to be calculated in the program. Comment cards have been included here for the user's benefit.

Chapter 3. Haterial constants such as molecular weights and the universal gas constant, turbulence parameters and Prandtl/Schmidt numbers are assigned values. The S.I. system of unit is used throughout the program. Subroutine LANGLI
is called to provide data for the enthaplies of the chemical species and the equilibrium reaction constants.

Chapter 4. Specified here are the flow jeometry (iplane or axisymmetric), inclination of the streamlines to the axis of symmetry and the cross-strean distances for the initial profiles.

Chapter 5. The initial profiles are read in from data cards. Values are assigned to the axial velocity, absolute temperature and species concentrations at the grid nodes. All the data input are in dimensionless form, having been normalized with the largest value of each dependent variable at the initial station. In developing CHARNN, fifteen test cases (specified by NASA Langley) have been run which required two different types of initial-profile specification.
(i) Continuous profiles (Test Case nos. 1-10,13)

Figure 2a shows the initial-velocity-profile typical of these lest cases. The tivo streams are separated by a wake region caused by the interaction of the boundary lavers on the dividing wall. Since the velocity is uniform near the jet centreline, the computation starts from a mixing-layer region with entraiment at the inner flow boundary until this bounciary grows to the axis of the jet (i.e., the end of the potential core).
(ii) Step profiles (Tost Case nos. 11-12, 14-15)

In these four test cases, the boundary layers on the dividing wall are ignored and a step-change in the velocity profile is assumed (see Figure 2 b). In these cases, the computation starts from a very thin mixing layer (with an assumed linear velocity profile) in the imrediate vicinity of the step-change.

The initial profiles of turbulent kinetic energy are then evaluated by assuming a constant ratio with the shear stress (as expressed by the mixing length hypothesis), whence

$$
\begin{equation*}
k=3.33\left[\ell_{\mathfrak{m}}\left(\frac{\partial u}{\partial y}\right)\right]^{2} \tag{3.3-1}
\end{equation*}
$$

The dissipation rates are then given by the PrandtlKolmogorov relationship

$$
\begin{equation*}
\varepsilon=k^{3 / 2} / \ell_{\varepsilon} \tag{3.3-2}
\end{equation*}
$$

Both the mixing length and dissipation length scale are assumed to be proportional to a typical width of the sizar region. The scheme adopted is shown in Figure 2.

The free-stream turbulent kinetic energy is taken as 4×10^{-4}. of the square of the free-stream velocity. The same constant is used to determine the initial profile of concentration fluctuations from the local concentrations of hydrogen element, i.e., $g / f^{2}=4 \times 10^{-4}$.

A variable of major importance in the computational procedure is OFAC, which is the ratio of oxygen element to nitrogen in the outer stream, since this ratio is assumed to be constant across the flow.

Chapter 5 also calls subroutine LANGL2 to evaluate the initial enthalpy profile.

Chapter 6. The dimensionless stream function array is filled by integration of the profiles of density and velocity according to equations (3.1-1) and (3.1-2). The density is obtainable from the ideal gas relationship,

$$
\begin{equation*}
\rho=P H / R T \tag{3.3-3}
\end{equation*}
$$

where the mean molecular weight of the mixture, H is given by,

$$
\begin{equation*}
\frac{1}{W}=\varepsilon \frac{m_{j}}{W_{j}} \tag{3.3-4}
\end{equation*}
$$

Subroutine STRIDI is cailed to evaluate useful quantities relating the individual H 's.

Chapter 7. This marks the starting point of the main computation; it is the point to which control is returned after the execution of each forward step. The most important functions of this chapter are,
(i) to call LAMGL3, which employs the chemical reaction constants relevant to the upstream conditions. (i.e., pressure and temperature) to determine the local mass fractions,
(ii) to call LANGL4 to calculate the temperatures corresponding to these concentrations (by way of the upstream specific heats) and
(iii) to evaluate the density profile from the local temperacures and mass concentrations

Chapter 8. This chapter performs t:oo main tasks. First it fixes the size the fortiard step and secondly it calls subroutine STRID2 to calculate transverse distances. The forward step is usually made proporitional to the width of the flow, with the coristant of proportionality small in the initial region to avoid instabilities at the start of the calculation. For confined flows, the streamwise pressure gradient, which is a source term in the axial momentum equation, is not known a priori. CHARNAL adopts the same non-iterative practice empToyed in CEillile, (see reference [1]). An estimate of the pressure change to be experienced over a forward step is obtained by reference to a 1-dimensional analysis. This usually results ir. the area of the flow differing from the pipe cress sectional area at the end of the forward step. However by adjusting the level of $\mathrm{dp} / \mathrm{dx}$ over the next step the difference in area can be kept negligible (typically 0.01% of the pipe area).

Chapter 9. This chapter fixes the conditions at the flow boundaries. Only when a boundary is a wall must information (either the value of ϕ or its diffusional flux) be specified at this point. (In the case of a free boundary, the relevant information is provided in STRID3 (based on the free-stream source terins) while at an axis of sylimetry, the zero gradient condition usually applies).

Chapter 10. The first chapter of AUX is called to determine the effective viscosity (regarded as the sum of the turbulent and ::minar viscosities) at each node and to formulate the source term based on the axial pressure gradient. For a free bounciary the entrainment rate is calculated via the degenerate form of tise conservation equation for whichever of the dependent variailes shows the largest changes near the edge of the flow. The entrainment is subject to certain controls to prevent the formation of 'tails' to the profiles and to prevent the onset of instability.

Chapter 11. This chapter deals with the output of information. At the first step, subroutine OUTP 1 is called to print-out information regarding the initial conditions. At certain axial positions (designated in Chapter 1) OUTP 2 is called to print-out such quantities as the entrainment rates, jet spreading rate, centreline values of the velocity, tenperature and species concentrations and the fluxes of the dependent variables. Also OUTP 3 may be called (not necessarily at the same stations) to print-out the profiles of quantities of interest (velocity, temperature, concentrations, etc.).

Chapter 12 . The last chapter terminates the execution after a specific axial distance has been covered. Otherwise, control is returned to Chapter 7.

3.3-2 AUX, STRIDE and !.:F

Only brief description is provided of these general-purpose subroutines as they are similar in structure and function to the correspondingly named subroutines in GENiIIX (reference [1]). Subroutine AUX is called initially from Chapter 10 of $\dot{\beta} A I N$ to provide the effective viscosities at the grid nodes. Chapter 2 is subdivided into five parts, one for each of the dependent variables other than the velocity. Each section evaluates the appropriate effective diffusivity and formulates the source arrays and is called in turn from STRIC. 3 as the finite difference equations are solved sequentially. The source terms for turbulent kinetic energy, dissipation rate and mean square concentration fluctuations are linearized according to equation (3.1-4), while that for stagnation enthalpy is loaded entirely into the upstream array.

Subroutine STRIDE is divided into four parts, of which the first two are largely preparatory, while the latter two contain the core of the numerical method of the program. STRID 0 merely sets to zero arrays such as those for the dependent variables and auxilary quantities. It is here that the decision is made as to whether to employ linear (KAST $(J)=0$) or castellated (KAST $(J)=1$) profiles bet:reen the grid nodes. STRID 1 evaluates useful relationships between the values of ω at neighboring nodes, these of course remaining constant for the whole of the calculation as the grid is always constrained to lie between limits of $\omega=0$ and $\omega=1$. STRID2 calculates the cross-stream distances at each axial station with but minor differences from the original program [1]. STRID3 contains the basic finite-difference formulation and technique of solution of the differential equations. Although different in appearance from the version puhlished in reference [1], the differences are largely only ones of arrangement. It is not proposed to dwell on points of detail here, but suffice it to say that STRIDE is a subroutine which the user has very seldom any need to change. STRID3 terminates by determining conditions at the flow boundaries and by initiating the forward step.

Subroutine IIF provides wall-function relationships to relate the fluxes (diffusional and convective) through the wall with the values of the dependent variables at the near-wall nodes. As appropriate to the high-Reynolds-number form of the turbulence model employed in this work, the wall functions are based on the assumption of a log-law velocity profile in the fully turbulent region of the flow.

3.3-3 OUTPUT and related Subroutines

Subroutine OUTPUT is divided into three parts, concerned respectively with the print-out of initial values of interest and station and profile variables. It communicates with PROFIL and thence with subroutine

PLOTS, which together niay be used to provide non-dimensional plots of the profiles. OUTPI reads alphanumeric information from data cards to provide the headings for the print-out. The meaning of the quantities printed from OUTP2 and CUTP3 is given in Appendix 1. Subroutine OUTP2 performs the useful function of checking for the overall conservation of fluxes of the dependent variables; in this analysis the concentration of hydrogen element is a conserved property as are the axial momentum and stagnation enthalpy (but for free flows only).

There is a large number of comment cards in OUTPUT, PROFIL and PLOTS to assist the reader in understanding the interlinkage between these subroutines. PROFIL is used to normalize the profiles and conimunicates with PLOTS which scales both the abscissa (transverse distance) and ordinate (ϕ values) of the dimensionless plots into the range 0 to 1 , (with negative values printed as zero). Either the normalized (IPROF $=1$) or the full dimensional (IPROF = 2) values of the dependent and auxiliary variables may be printed out in OUTP3. If the former approach is adopted, the full dimensional values are still printed at the first and last nodes (designated 1 and NP 1 respectively). The cross-stream distances $Y(\mathrm{I})$ are treated in this way, the first quantity printed being the radius of the intcrial flow boundary and the last the distance between the internal and external boundaries.

Subroutine YINT may be called at any point in the program and is merely an interpolation subroutine. It is useful in the determination of such quantities as the half-width of the jet or locating the exact position where the value of an entity ϕ is a linear combination of the values of ϕ at the inner and outer boundaries of the flow.

3.3-4 Subroutine LANGLEY

Subroutine LANGLEY has been developed exclusively for the present work and is subdivided into four parts, whose purposes are respectively
(i) the loading of the individual species and the chemical equilibrium constants for the stipulated reactions.
(ii) the evaluation of the initial enthalpies by simple interpolation amongst the input data.
(iii) the calculation of the species mass fractions by solution of six simultaneous equations.
(iv) the evaluation of the cross-stream temperatures from the enthalpies and the upstream specific heats.

Data for enthalpies and chemical-reaction constants are those proposed by MCBride [5]. The enthalpy of each species may be written in the form

$$
h-h_{\text {ref }}=\int_{T_{\text {ref }}}^{\dot{T}} c_{p} d T+\Delta h_{f}, T_{\text {ref }}
$$

where $\Delta h{ }^{\prime}{ }^{\prime} T_{\text {ref }}$ denotes the heat of formation of the species at the reference temperature. It is usual to take the datum of enthalpy as zero at a reference temperature of $298.15^{\circ} \mathrm{K}$, whence

$$
\begin{equation*}
h=\int_{298.15^{\circ} \mathrm{K}}^{T} c_{p} d T+\Delta h f,{ }_{298.15^{\circ} \mathrm{K}} \tag{3.3-6}
\end{equation*}
$$

$$
=\int_{0^{\circ} K}^{T} c_{p} \dot{T}+\left[\Delta h f,{ }_{298.15^{\circ} K}-\left(h_{298.15^{\circ} K}-\dot{h}_{0 \circ} \mathrm{~K}\right)\right]
$$

$$
\begin{equation*}
\equiv \bar{C}_{p} T+H_{0} \tag{3.3-7}
\end{equation*}
$$

where $\bar{C}_{p}\left(\equiv 1 / T \int_{0^{\circ} K}^{T} C_{p} d T\right)$ denotes a mean specific heat and H_{0} is the composite of the remaining terms. Values of h are read in at intervals of $100^{\circ} \mathrm{K}$ for temperatures of up to $6000^{\circ} \mathrm{K}$, togcther with the value of H_{0} for each species. The mean specific heats are then evaluated from equation (3.3-7) and stored (see Appendix 1 for array locations).

LANGL2 is called to obtain the initial enthalpy profile by linear interpolation of the h / T data. The enthalpy of the mixture is then given by

$$
\begin{align*}
h & =\Sigma m_{j} h_{j} \\
& =\Sigma m_{j} C_{p, j} T+\Sigma m_{j} H_{0, j} \tag{3.3-8}
\end{align*}
$$

LANGLI is also useci to store data for the chemical equilibrium for the four reactions invoived in the combustion process. These are again taken from McBride [5] and are in the form of constants relating the partial pressures of the individual species, l.e., for the reaction

$$
a X+b Y=Z
$$

(implying the formation of 1 unit of substance Z from (a) units of X and (b) units of Y), the partial pressures of the species are linked by a constant, K_{p} given by the relation

$$
\begin{equation*}
K_{p}=p_{Z} / p_{X}{ }^{a} p_{Y}^{b} \tag{3.3-10}
\end{equation*}
$$

[Because K_{0} (which is a function of temperature) varies markedly, numbers on the data cards refer to $\left.\log _{10} K_{p}\right]$. Kp's may be transformed into constants relating the species mass fractions by use of the ideal gas law, whence

$$
\begin{align*}
K_{m} & =m_{z} / m_{x}{ }^{a} m_{y}^{b} \\
& =K_{p}(p w)^{a+b-1} w_{z} /\left(w_{x}^{a} w_{y}^{b}\right) \tag{3.3-11}
\end{align*}
$$

where $\|_{j}$ denotes the individual molecular veights and U is the mean molecular weight of the mixture. Values of $\left(K_{p} W_{z} / W_{x}{ }^{a} W_{y}{ }^{b}\right)$ are
stored for each reaction involved. In using Equation (3.3-11), it is to be remembered that the total pressure, p must always be expressed in atmospheres.

LANGL3 evaluates the concentrations of the individual species by six simultaneous algebraic equations, viz.

$$
\begin{align*}
& k_{m, 7}=m_{0_{2}} / m_{H}^{2} \tag{3.3-12}\\
& k_{m, 2}=m_{H_{2}} / m_{0}^{2} \tag{3.3-13}\\
& k_{m, 3}=m_{O H} / m_{0} m_{H} \tag{3.3-14}
\end{align*}
$$

$$
\begin{align*}
& K_{m, 4}=m_{H_{2}} \mathrm{O}^{\prime} \mathrm{m}_{\mathrm{H}} \mathrm{H}_{\mathrm{OH}} \tag{3.3-15}\\
& x=m_{O_{2}}+m_{0}+\frac{H_{0}}{H_{H_{2} \mathrm{O}}} m_{\mathrm{H}_{2} \mathrm{O}}+\frac{H_{0}}{W_{\mathrm{OH}}} m_{\mathrm{OH}} \tag{3.3-16}\\
& f=m_{H_{2}}+m_{H}+\frac{H_{H_{2}}}{W_{H_{2} O}} m_{H_{2} O}+\frac{W_{H}}{W_{O H}} m_{O H} \tag{3.3-17}
\end{align*}
$$

in which the equilibrium constants (which are functions of pressure, temperature and concentrations) are based on the upstream conditions, since the temperatures can only be calculated once the mass fractions have been found.

The first function performed by LANGL3 is to evaluate the reaction constants and mean specific heats by linear interpolation amongst the input data. Equations (3.3-12) to (3.3-17) are then solved iteratively until convergence to within 1% is obtained for all species present to an extent of more than 10^{-6}, or until the number of iterations exceeds a certain limit. The actual iterative scheme is of necessity rather elaborate since the relative concentrations of the species can vary markedly. The following practices are adopted
(i) the concentration of nitrogen is easily calculable as ($1-G F A C$)(1-f).
(ii) The concentrations of the remaining species at the previous axial position are used as a'first estimate of the domstream values.
(iii) The equations for f and $X[=O F A C(1-f)]$ are examined to determine the largest term on the right-hand side of
each. For example, suppose that $\frac{\mathrm{U}_{0}}{\mathrm{I}_{\mathrm{H}_{2} \mathrm{O}}} \cdot m_{\mathrm{H}_{2} \mathrm{O}}$ and $\mathrm{m}_{\mathrm{H}_{2}}$ are the largest quantities.
(iv) Using the values of $m_{H_{2}} \mathrm{O}$ and $\mathrm{m}_{\mathrm{H}_{2}}$, equations (3.3-12) to (3.3-15) can then be solved to determine the concentrations of the remaining four species.
(v) $\mathrm{m}_{\mathrm{H}_{2} \mathrm{O}}$ and $\mathrm{m}_{\mathrm{H}_{2}}$ can then be re-evaluated from Equations (3.3-16) and (3.3-17).
(vi) The right-hand sides of the X and f equations are then re-examined and the next iteration cycle made to operate on the two largest quantities.
(vii) licration is repeated until the convergence criteria are satisfied or the number of iterations becomes excessive.

Convergence is usually rapid (2 iterations), but instability occurs whenever two of the terms in either of the additive equations [(3.3-16) and (3.3-17)] become of approximateiy equal magnitude. This happens (a) at high temperatures ($>3000^{\circ} \mathrm{K}$) where the concentration of atoms approaches that of the molecuies and (b) in the region of the stoichiometric point where the concentration of combustion products becomes-large. In the flows under investigation, the maxinum predicted temperature was approximately $2600^{\circ} \mathrm{K}$; (b) was therefore the main source of instability. It often happened that on successive iterations different constituents were the largest terms in Equations (3.3-16) and (3.3-17). Oscillatory rather than convergent behavior would then result. However, underrelaxation of the species concentrations between successive iteration cycles generally achieved the required degree of convergence within 12 iterations. A warning message is printed out whencver the iteration process fails to converge within this limit.
!!hen the species concentrations have been found, LANGL4 is called to evaluate the cross-stream temperatures. These are obtained from enthalpy profile via the relationship,

$$
\begin{equation*}
T=\left(h^{\prime}-\Sigma m_{j} H_{0, j}\right) / m_{j} \bar{C}_{p_{j}}, \tag{3.3-18}
\end{equation*}
$$

for wich the mean specific heats are evaluated in LANGL3 on the basis of the upstream temperatures. One could regard this value of temperature as a first estimate of the actual value, since a more accurate estimate could be obtained by re-evaluating the K_{π} ' s to obtain new values of the constituent mass fractions, a new mean specific heat, and from (3.3-18) a new T. LANGLEY does not incorporate such an iteration cycle (though it would not be difficult for a user to add). Instead, under-relaxation of the temperature between upstream and downstream stations damps out any
temperature spikes which would otherwise appear at positions close to the stoichometric point.

3.4 Use of the Present Program

CHARNAL solves 6 simultaneous partial differential equations and employs typically 25 nodes (although the storage blocks have been dimensioned to allow for as mans as 40). The program is written in basic CDC Fortran language and requires approximately 12 seconds compilation time on a CDC 6600 machine (FUN compiler). Linear profiles are assumed for the variation of the dependent variables between the grid nodes and a typical forward step size of 0.1 times the local shear layer width is employed. Approximately 15 axial steps can be executed per second. Conservation of the individual fluxes is generally good to within $+0.1 \%$. In the present work, the profiles have been printed out in full dimensional form and are plotied at only one axiai position (corresponding to the end of the potential core region). The program has a modest storage requirement, needing only approximately 24000 decimal storage locations.

The remainder of this section is concerned with the information that the user has to provide via data cards in subroutines $1 / 1$ IN and LANGLEY. In Chapter 1 of HANN, control indices which have to be set are:
(i) Detajls of the grid and nature of the flow

KASENO : Test case number
HEQ : number of differential equations
H : nunber of grid nodes
KASE : type of flow; = 1 (free jet), $=2$ (confined flow)

KIN : specification of internal flow boundary) = 1 (wall) $=2$ (free)
KEX : specification of external flow boundary) $=3$ (axis of symmetry)

KONFIN : denotes presence of confining duct wall; $=$ (1 wall present), $=2$ (no wall)

IN2, IO2, IH2O : denote presence of individual species; $=0$ (not present), $=1$ (present)

NR : number of reactions
NS : number of chemical species
$\begin{aligned} \text { INUF : nature of initial profiles } & =0 \text { (continuous) } \\ & =1 \text { (step-change) }\end{aligned}$
次: : initial axial distance (in nozzle diameters)
XijLAST : last axial distance (in nozzle diameters)
YIN : radius of internal flow boundary (in nozzle diameters)

YOUT : diameter of jet nozzle
RDUCT : radius of confining duct
PRESS : static pressure (in atmospheres)
TA : maximum temperature at initial station
UIN : maximum velocity at initial station
YW7 : extent of inner shear region (in nozzle diameters) i.e., distance-from axis of symmetry to minimum in velocity profile

U:H : veiocity at position denoted by YW1
IIH : grid node corresponding to VH 1 l and $\mathrm{U}: \mathrm{II}$
TDUCT : temperature of duct wall (for confined flous only)
(ii) Output parameters

IISTAT, NPROF, INPLOT : number of axial stations bet:leen print-out of (i) station variables, (ii) profile variables and (iii) non-dimensional plots

XSTAT, XPROF, XPLOT : the corresponding axial distances (in nozzle diameters)

The next data ciards are read in from LAilGLl and refer to the chemical equilibriun constants for the 4 (AR) reactions and ti;e enthalpies for the 7 (NS) species; these must be in the same order as the auxiliary variables are data-typed in Chapter 2 of HAil. The data are read in at intervals of $100^{\circ} \mathrm{K}$ for temperatures up to $6000^{\circ} \mathrm{K}$, so that for example, HT (2.35) refers to the enthalpy of species 2 (oxygen) at $3500^{\circ} \mathrm{K}$.

Further data cards provide the initial profiles in Chapters 4 and 5 of HAIN. .For those tesi cajes involving step profiles, only the cross-
strean distances are required together with the values of velocity, temperature and species concentrations in each free stream. Appropriate profiles for the thin mixing layer uncier consideration are then generated internally. For cases with continucus profiles, the cross stream distances, velocities, temperatures and the concentrations (of those species whose presence has been previously indicated) are read in and converted to full dimensional form.

The remaining data cards contain alphanumeric data which are used to provide headings for the print-out. These are read in from LANGLI and supply information on
(i) the test case number and description (2 cards)
(ii) the dependent variables of the calculation (10 cards)
(iii) the chemical reactions assumed (NR cards)
(iv) the species present (NS cards) and
(v) their chemical symbois (1 card).

4. Discussion of Sample Prcdictions

To examine the general capabilities of CHARAAL, fifteen test cases, prescribed by ilASA Langley, involving the mixing and combstion of a hydrogen jet with various coaxial gas streams have beer computed. The computer outputs of these runs have been forvarded separately to the contracting agency. In this section we examine various features of the numerical predictions, the main attention being given to test cases 1 and 4, for which the prescribed initial profiles of velocity and temperature are given in Table 2.

Jet velocity and teriperature profiles for Case 1 at four downstream stations are shown in Figures 3 and 4. The wake region of the profile arises from the wall bounciary layers that are present on wall of the hydrogen pipe. As the shear flom develops do:nstream the jet spreads and the velocity level falls. Notice that the jet region is still present at $x / D=50^{*}$. From the temperature profiles shown in Figure 4 tile region of

[^0]combustion is clearly evident thrcugh the sharp peak in the temperature level. It is scen that the naximum iemperature refairs virtually constant as the shicar flow ceveichs downstream.

The decay of mass fraction $m_{H_{2}}$, is shown in Figure 5. Comparison is drawn between predictions for Case 1 and Case 3 in which initial conditions are similar to Case 1 except that the surrounding gas is nitrogen (which is non-reacting) rather than air. Also shown is a prediction from reference [2] obtained, with the same model of turbulence as that used here, for a non-reacting hydrogen air jet with velocity ratio similar to Case 1 but where the total temperature of the external stream was only $300^{\circ} \mathrm{K}$; the density of the air is thus approximately 3 times that for Case 1. (The prediction from [2] was in satisfactory agreement with the experimental data of Eggers [7], which for clarity are omitted from Figure 5). Clearly, because of the sinaller density of the external stream, the rate of dilution of the hydrogen jet is appreciably slower for the present test cases than in the reference [2] computation. The decay rate is seen to be faster for the hydrogen/nitrogen mixing than for the hydrogen/air jet. This behavior is attributable to the fact that combustion does not take place in Case 3, hence temperatures within the jet are lower and density correspondingly higher (if reaction is suppressed in test. Case 1 the rate of decay of $\mathrm{m}_{\mathrm{H}_{2}}$
is nearly identical with that of Case 3).

Distributions of some of the important dependent variables affecting the flow development are shown in Figures 6-9. The station selected is 20 jet diameters downstrean from the exit (through the profile shapes vary only slightly with streamuise position). It is seen from Figure 6 that the turbulence energy k reaches its maximum value at the axis. This is generally a feature of axisymmetric jets and is in contrast with the behavior of plane jets where the peak energy level occurs near the position of maximum shear stress. (Tie different behavior is attributable to the more rapid axial decay that occurs in the round jet). Profiles of mean and mean-sqiare-fluctuation levels of hydrogen element are shown in Figure 7. It is, noted that the rapid decrease in the level of fluctuations in the outer part of the jet is the reason that the f_{+}line in Figure 10 lies much closer than does f to the stoichiometric line.

The calculated distributions of radicals and atomic species are shown in Figure 9. Their level is very sensitive to temperature and this is why a logarithmic scale is adopted for the ordinate. The peak-calculated concentration of $3 H$ is approximately 1% by mass, about ten times as large as the maximum mass fractions of 0 and it. The corresponding distributions of molecular concentrations $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ are shown in Figure 10. The figure includes predictions for "case 8" as well as Case 1. Initial conditions for the former differ from Case-l principally through the presence of appreciable water vapor in the external stream. It is seen that, as a result, the level of $\mathrm{H}_{2} \mathrm{O}$ is higher throughout the jet than in Case 1 and
the level of H_{2} and O_{2} correspondingly lower. The hydrogen profiles for the two cases are virtially identical.

Turning now to the confined flows, it must be said at the outset that, for the conditions prescribed in the test cases, the rate of spread of the jet was so slow that in no case do the predictions show the jet - having reached the pipe wall by the downstream end of the field of computation. There are, nevertheless some effects of the flow confinement theugh these are mainly seen in the velocity developinent (Figure 5 shows that the centreline mass fraction of H_{2} is only slightly diminished by the presence of the pipe wall). Because the flow is supersonic, the exothermic reaction leads to a rise in static pressure with distance along the duct. This adverse pressure gradient causes a reduction in the level of velocity as the jet develops along the duct; velocity profiles at three stations are shown in Figure 3. The variation of centre line velocity with x is shown in Figure 11 for four test cases. Note that, for Case 6 in which confined streams of hydrogen and nitrogen mix without chemical reaction, the variation of U_{t} is virtually identical with the corresponding unconfined flow, Case 3.

To convey an impression of the capubilities of CHARPAL for predicting both free and wall flows, Figure 12 shows predictions obtained for the mixing of subsonic H_{2} /air streams. In order to achieve a faster rate of spread than in any of the prescribed test cases the initial core jet velocity is set to five times that of the surrounding stream; moreover the diameter of the confining pipe has been reduced to 49 inm . Figure 12 shows the development of the velocity and temperature profiles along the duct. The jet reaches the pipe wall about 33 jet diameters from the start and by 40 diameters downstream the velocity profile looks generally like that found in pipe flow. By 75 diameters combustion is virtually complete and the temperature is uniform except in the vicinity of the wall.
5. Suggestions for Further Extensions and Refinements of CHARNAL

CHARNAL provides numerical predictions of how combustion will proceed in reacting hydrogen jets. It ought to be emphasized, however, that this behavier will not necessarily coincide - nor, sometimes, even approximate to - the actual development of the flow. Validation and comparison of the predicted behavior with available experimental data ought therefore to precede any use of the program for detailed design calculations. Uithout in any way preempting the outcome of such a series of comparisons, it may be helpful to indicate briefly some areas where improvements to the present version could be made. These are outlined briefly below.
(i) Combustion model

While the equilibrium combustion nodel embodied in CHARNAL may be adequate in high temperature flows, it evidently leads to unrealistically fast rates of combustion at low temperatures. The argument in favor of
assuming chemical equilibrium is that the chemical constituents may then be determined from solution of algebraic rather than/differential equations with corresponding savirgs in computer time. The savings however are relatively modest because the aigebraic set of equations are significantly monlinear and require iteration at each node to solvé.

A further important point is that only with a differential reaction scheme can one take proper account of the role of species fluctuations on the progress of the chemical reaction. It is thus recommended that in the future CHARNAL be extended to include a finite-rate reaction model. At the same time consideration should be given to the inclusion of a more elaborate reaction model than that implied by equations (2.3-1-2.3-4).

Turning now to the turbulence-model, it must be said that there are a number of areas of uncertainty. The Proceedings of the Langley Conference on Free, Shear Flows (of which reference [2] forms a small part) suggests that the Hach number of the fluid may exert an influence on the shear flow development-at any rate for flows, such as the mixing layer, where turbulence level's are high. It is also known (see Reference [2]), that the quantity C_{μ}, although assumed constant in the present work, increases, appreciably when the average level of turbulence energy production at any station becomes small compared with the dissipation rate. Now it happens that in many of the test cases examined by CHARNAL the momentum excess due to the hydrogen jet moving faster than the external stream is just about balanced by the momentum deficient of the boundary layers on the nozzle walls. This situation leads to a rapid decrease in rate of energy production with x.

If these circumstances are the ones that prevail in the majority of tests to which CHARAAL is to be put it would therefore be desirable to replace the present constant c_{μ} by the elaborate dependency on energy production: dissipation rates presented in [2] (associated with the model designated $k \varepsilon 2$ in that reference). Such a change would produce a somewhat faster rate of spread of the jet than does the present model from about 15 diameters downstream of the jet exit to the point at which the jet reaches the pipe wall (if present). There is in addition the possibility that combustion will affect in some way the turbulence transport. There seems no conclusive evidence on this point yet but this perhäps mainly reflects the lack of sufficiently well documented experimental data.

A separate, albeit related, point to those discussed in the above paragraphs is the importance of accurate upstream profiles. An abiding feature of weak shear flows such as those tested by CHARNAL is their inability to 'forget' the nature of their origin. For example the far field behavior of axisymmetric wakes depends crucially on the shape of the wakegenerating object. It folloiss, therefore, that in order to obtain reliable predictions of the present hydrogen/air jets it is necessary that the upstream values of the mean velocity and turbulence quantities be known accurately. Kicucver, no information was provided en the profiles of turbulence quantities and so "best estimates" had to be made estimates,
however, that may give the wrong levels of k or ε by a factor of two or three. It would certainly be helpful in clarifying the degree of realism provided by the present model of turbulence if a few more experiments could be performed for conditions.similar to those examined by Eggers [7] in which especial attention was given to a full documentation of the upstream flow conditions.

6. References

1. S. V. Patankar and D. B. Spalding, 'Heat and Hass Transfer in Boundary Laycrs' 2nd Edition, Intertext, 1970.
2. B. E. Launder, A. llorse, D. B. Spalding and W. Rodi, 'Prediction of Free Shear Flows - A comparison of the performance of six turbulence models' Proceedings of Free Shear Flows Conference, 1972 NASA SP 321.
3. B. E. Launder and D. B. Spalding, 'Turbulence models and their application to the prediction of internal flow' Heat and Fluid Flow 2, 1972.
4. J. C. Rotta; 'Turbulent boundary layers in incompressible flow' in Progress in Aeronautical Sciences, Vol. ?, (ed A. Ferri, D. Kuchemann and L. H. G. Sterne) lacmillan; 1962.
5. B. AcBride, 'Thermodyamic properties to $6000^{\circ} \mathrm{K}$ for 210 substances involving the first 18-elements' HASA SP-3001, 1963.
6. D. B. Spalding, 'Concentration fluctuations in a round jet', J. Chem. Eng. Sci. 26, 95, 1971.
7. J. H. Eggers, 'Turbulence mixing of coaxial compressible hydrogenair jets, NASA TN D-6487, 1971.
8. Nomenclature

$C_{u}, C_{1}, C_{2}, C_{g 1}, C_{g 2}$	constant coefficients appearing in turbulence mojel.
$\bar{C}_{p j}$	mean specific heat of species j.
D_{j}	diameter of jet nozzle.
f	mass fraction of elemental hydrogen.
g	mean square fluctuations in f.
h	enthalpy.

\hat{h}
Δh
shf
k
ℓ_{ε}
ℓ_{m}
m_{j}
p
r

R
T
u
$\overrightarrow{u v}$
v
W_{j}
X
X
$Y_{W 1}, Y_{W 2}$
Γ
ε
μ_{t}
ρ
stagnation enthalpy.
difference between enthalpy of species at $238.15^{\circ} \mathrm{K}$ and $0^{\circ} \mathrm{K}$.
heat of formation of species j.
kinetic energy of turbulence.
dissipation length scale $k^{3 / 2 / \varepsilon}$
mixing length.
mass fraction of species j.
static pressure.
radius (measured from axis of jet).
radius of pipe enclosing jets.
tomperature.
local streamıise velocity.
local turbulent shear stress.
velocity normal to axis of jet.
molecular weight of species j.
distance along center axis
mass fraction of elemental oxygen.
effective widths of shear flow, see Figure 2.
effective turbulent flow transport coefficient (subscript denotes diffused quantity).
rate of turbulence energy dissipation.
turbulent viscosity.
density of mixture.
σ
ψ
ψ
ω

Subscripts
E
D
E
i
I
ref
U
∞
effective Prandtl/Schmidt (subscript denotes diffused quantity).
any of the primary dependent variables.
stream function defined by equations (3.1-2).
dimensionless stream function defined by equation (3.1-1).
conditions on the jet axis.
downs tream.
external edge of shear flow.
value of quantity at initial station.
internal edge of shear flow.
reference value of quantity.
ups tream.
conditions prevailing beyond the outer edge of shear flow.

Table 1 Flow Chart of Ciiniwal Program.

Table 2 Initial Profiles for Cases 1 and 4

R / D_{j}	Temp.	Velocity	Mass Fraction						
	(K)	$\left(\mathrm{m} \mathrm{sec}{ }^{-1}\right)$	H_{2}	H	OH	$\mathrm{H}_{2} \mathrm{O}$	O_{2}	0	N_{2}
0	193	2111	1						
. 046	193	2111	1						
. 137	193	2111	1						
. 227	202	2108	1						
. 273	240	2037	1						
. 318	502	1209	1						
. 363	694	198	1						
. 409	1058	660					. 232		. 768
. 454	1163	1001					. 232		. 768
. 500	1173	1138					. 232		. 768
. 590	1178	1220					. 232		. 768
. 726	1176	1245					. 232		. 768
. 950	1171	1283					. 232		. 768
1.05	1171	1283					. 232		. 768
Free Stream									

c. Finite Difference Grid

Figure 1. The Flow Geometry Treated by CHARNAL

At $A, U=0.9 U_{I}+0.1 \bar{U}$
At $B, U=\bar{U}$
At $C, U=0.9 U_{E}+0.1 \bar{U}$
$y_{W 1}=$ Characteristic Shear Width for Inner Region of Flow (Axis $\rightarrow B$)
$y_{W 2}=$ Characteristic Shear Width for Outer Region of Flow $(B \rightarrow$ Free Stream $)$
a. Continuous Velocity Profile

At $A, U=0.9 U_{I}+0.1 U_{E}$
At $B, U=0.9 \mathrm{U}_{\mathrm{E}}+0.1 \mathrm{U}_{\mathrm{I}}$
$\mathbf{y}_{\mathrm{W}]}=$ Characteristic Shear Width for Thin Mixing Layer
b. Step-Change Velocity Profile

Figure 2. Initial Velocity Profiles and Characteristic Flow Widths

Figure 3. Velocity Profiles

Figure 4. Temperature Profiles (Test Case No. 1)
a, Test Case No. 1 ($\mathrm{H}_{2} /$ air $)$ Unconfined
b, Test Case No. 3 ($\mathrm{H}_{2} /$ nitrogen) Unconfined
c, Test Case No. 4 ($\mathrm{H}_{2} /$ air) Confined
d, Ref [2] Computation of Non Reacting $\mathrm{H}_{2} /$ air Jets

Figure 6. Profiles of Velocity, Turbulent Kinetic Energy and Reynolds

Figure 7. Profiles of Temperature and Density and Hydrogen Element Concentration (Mean and Fluctuating) Test Case Number $]$
$\frac{T-T_{\infty}}{T_{\infty}}$
ρ / ρ_{∞}
$f / f_{\&}$
$g / f_{\Phi}^{2} \times 10$

Figure 8. Profiles of Radical and Atomic Concentrations (Test Case No. 1)

a. Case No.. $1 \times / D_{j}=20$

b. Case No. 8 (H_{2} Vitiated Air) $x / D_{j}=15$

Figure 9. Mass Fractions of Molecular Species

Figure 10. Location of Flame Front and Jet Half-Width (Test Case Number 1)

Anpendix 1: Listing of fortran Variables

Appendix 1. Listing of Fortran Variables

Listed below are some of the most important Fortran variables used in the computer prograni. To prevent an excessive list, attention has been confined to those variables which are neither (a) self-evident in meaning, (b) indicated by conment cards in the program, (c) discussed in Section 3.5 or (d) connected solely with the finite difference formulation of the equations. Arrays are shown with the maximum numerical values of their subscripts.
Fortran Symbol Significance

AK : constant of proportionality in near-wall mixing length formulation, $\rho_{m}=\mathrm{Ky}_{\mathrm{G}}$.

ALMG : constant of proportionality in free shear layer mixing length formulation, $\ell_{m}=\lambda y_{G}$.

AMACH : Mach number, $u /(\gamma R T)^{\frac{1}{2}}$.
CE1 $\left\{\begin{array}{l}\text { Constants in the dissipation rate equation }\end{array}\right\}$
CFA : conversion factor from calories/gram. mole to joules/kg.

CFAC : pressure x molecular weight of mixture
\(\left.\begin{array}{l}CG1

CG2\end{array}\right\} \quad:\)| constants in mean square concentration fluctuations |
| :--- |
| equation. |

CLINE : local centreline mass fraction of molecular hydrogen : initial value.

CHO
: constant in Prandtl-Kolmogorov viscosity formulation $\mu_{T}=C_{\mu} \rho k^{2} / \varepsilon$

CONST : constant of proportionality, $-\overline{\overline{W V}}\left(=C_{\mu}^{\frac{1}{2}}\right)$
$\operatorname{CPBAR}(7,00):$ mean specific heats of chemical species at intervals of $100^{\circ} \mathrm{K}$.

CPPN (10) : mean specific heats of chemical species at upstream temperatures.

CSALFA: cosine of angle of inclination of streamlines to axis of symmetry.

Fortran Symboi	Significance
DPDX	axial pressure aradient, $\partial \mathrm{p} / \partial \mathrm{x}$
DUDY (40)	mean velocity gradient, $\partial u / \partial y$
DX	forward step size
DXLITi	limit of entrainment rates (bound to size of forward step).
DYHA	growth parameter of jet, dy, $5 / \mathrm{dx}$ (see also YHA)
DDYHA	$\frac{d}{d x}\left(d_{0.5}^{\prime} / d x\right)$
ERIUL (40)	Taminar viscosity, μ
EINUT (40)	turbulent viscosity, μ_{\top}
ENTH (40)	static enthalpy, in
F (10,40)	dependent variables (see Chapter 2 of liAIN)
FAI	constant for determination of free-stream turbu?ant kinetic energy and profile of mean scuare coricentrition fluctuations
FA?	constant of proportionality in a free shear layer dissipation length scale formulation, $\ell_{\varepsilon}=\lambda y_{G}$
FACI	location where $f-g^{\frac{1}{2}}=f_{\text {stoich }}$
FACE	location where $f+g^{\frac{1}{2}}=f_{\text {stoich }}$
FACH	locstion where $f=f_{\text {stoich }}$
FRA	constant of proportionality between for:/ard step size and width of shear layer
FS (10,40)	auxiliary variables (see Chanter 2 of ilaIN)
FSTOICH	stoichionetric fuel composition
GAFI (40)	effective diffusion coefficient

GAIMA : ratio of principal specific heats, $\mathrm{Cp} / \mathrm{Cv}$
GASCON : universal gas constant
$H 0$ (10) : the quantities $\Delta h_{f, 298.15^{n} K^{-}\left(h_{298.15}{ }^{\circ} K^{-} h_{0 \circ K}\right)}$ (see Section 3.3-4)

IAX : axial step number corresponding to end of potential core region

IEND : axial step corresponding to point where jet edge reaches duct wall

INDE (10) : indices denoting nature of boundary conditions
INDI (10) $=1$ (ϕ stated $),=2$ (gradient ϕ stated $)$
IPD : turbulence model parameter; $=3$ (use of plane flow constants), $=1$ or 2 [see Launder et al (2)]

IPROF
: profile index; $=1$ (normalized values), $=2$ (full dimensional values)

ISTAR (40) : number of iteration cycles allowed for convergence at each node

ISTEP : axial step number
$J 1$
: "pecies with largest concentration in equation (3.3-16)
J2
: species with largest concentration in equation (3.3-17)
KRAD
: flow geometry index $;=1$ (plane), $=2$ (asixymmetric)
: number of grid nodes, n
Mil : $\mathrm{n}-1$
NP1 : $n+1$
O:AC : ratio of oxygen element/nitrogen in outer stream
Oin (40) : non-dimensional stream function
$P(40): \quad$ static pressure
PEI : change in stream function across flow, $\psi_{E}-\psi_{I}$

Fortran Sy	Significance
PR (10)	moliecilar Prandtl/Schmidt numbers
PRDRP	pressire drop, $\mathrm{p}_{j}-\mathrm{p}$
PRT (10)	turbulent Prandtl/Scimidt numbers
PSIE	value of stream function at external boundary ψ_{E}
PSII	value of stream function at internal boundary ψ_{I}
PSIR	value of stream function at duct wall ψ_{R}
QE	wall lieat transfer rate
R (40)	distance from axis of symmetry ($\left.=r_{I}+y \cos \alpha\right)$
RC $(5,60)$	cherical equilibrium constants for each reaction at intervals of $100^{\circ} \mathrm{K}$
	[i.E. R.C (5,1) contains constants for the global reaction, $\mathrm{H}_{2}+\frac{l_{2} \mathrm{O}_{2}}{}=\mathrm{H}_{2} \mathrm{Ol}$
RCOir (10)	chemical equilibrium constants at upstream conditions
REXD	dimensionless excess radius in pressure gradient formulation for confined flows
RFLOM	flow radius (see REXD)
RJE (10)	diffusive flux at external boundary
RJI (10)	diffusive flux at internal boundary
RJTE (10)	total flux (convective and diffusivo) at external boundary
RJTI (10)	total flux (convective \& diffusive) at internal boundary
RME	mass entrainment rate (radius mass flow rate)
RMI	mass entrainment rate (radius mass flow rate) at internal boundary
ROUBAR	mass flux for confined flows (= mass flow rate/ X-sectional area of duct)
RTW (40)	turbilence frequency (dissipation rate/turbulent kinetic erergy), ε / k

Fortran Symbols	Translation
SCH (00)	Prandtl/Schmidt number array for near-wall flows
SD (40)	storage lucation for "downstream" source terms
SU (40)	storage location for "upstream" source terms
taue	shear stress at wall
tbar	bulk temperature ($\int_{\text {duct }} r$ UTdy $/ \int_{\text {duct }} r$ Udy)
TLINE	local centreline temperature/initial value
UBAR	bulk velocity ($=\int_{\text {duct }} r U^{2} d y / \int_{\text {duct }} r$ Udy)
UEIN	initial centreline velocity excess ($\left.u_{ \pm}-u_{\infty}\right)_{i}$
ULIAE	limit on entrainment at external boundary (to prevent formation of profiles witi 'long tails')
U'Liril	limit on entrainment at external boundary (to prevent formation of profiles with 'long tails')
l'line	local centreline velocity excess $\left(u_{ \pm}-u_{\infty}\right) /\left(u_{t}-u_{\infty}\right)_{i}$
Vmix	reciprocal of molecular weight
Mi (10)	molecular weight
x	concentration of oxygen element
XAX	length of potential core (in nozzle diameters)
XD	axial distance at dounstream station
XU	axial distance at upstream station
XUD	upstream axial distance/jet nozzle diameter
Y (40)	transverse distance from internal flow boundary
YHA	jet half-width, $y_{0.5^{\circ}}$

PPOGPAM CHARNAL（TNPUT．OLTPUT，TAPES＝IAPUT．TAPEם＝OUTPUT）

C
C SPAIITING NND SATANKAR PASSA PROGPMMME FOR ROUNDARY LAYER FLOUS
C MODIFTE OY A．MORSK FOK PMEDICTION OF CONFINED／FREE HYDKOGEN－AI： C MIXTIRES FOR LIANGLEY FESEARCH CEITER，U．S．A．JUNE 1973
C

DIMENSION THETA（40）

4×0, ヘ̈l，Y（4n），YUIF（40），YE，YI，RJTE（10），RJTI（10）
COFMON／CRIND／RFLOIGREXO，KASE
COMFOM／CJ®／JU，JK，JD，JHS•JA，JF•JTF，JLF，JIJV，JB

COMM（N／CTHRH／AK，ALMG．CNU，CMUIN，CE1，CE2，CGI，CG2．CPIT•MUIYY（40），
10いOYSO（40），HMUL（40），FNUT（40）•IPD，PR（10），PRT（10），HT：！（40）
COMHOM／OUTPT／TAX，TEMD，YIN，YUUT，YGA，LIYHA，OUYHA，RDUCT，KP，KS，KT，

COMHCN／CWaF／Yir（D），IRUF（己）EEWALL，，H
COMMCM／TPLOTG／XTAXIS．X゙TPLOT（40），YTAKES（10），YTPLOT（10，40），
IYYMAX（10），YTSYMA（10）．OUT（40），IPROF

 CHAPTFR 1
CW\＆\＃\＃\＆PLRAIFTERC ANI CONTROL INOICF．S

1N，IO？，LNZ，IU2O，NI：NS．IUNF
REAU（H，1152）X！，KリLAST，YIN，YOUT，ROUCT，PRESS，TA，UIN
IF（IUNF•EO．O）FKEDD（5．501）YWI．UWI，IWI
IF（K人，Sと．En．C）RFAO（5，500）TDUCT
PRESS＝HNESS＊L．E +05
X11＝X1＊YOUT
XILAST＝XULAST＊YOUT
YIN＝YYp＊Yn！T
DPDX＝に．
REAB（5，1152）（X5TAT（I），I＝I，NGTAT）
RFAO， 5,1152 ）（XPMOF（I），$I=1, N P R O F)$

XPROF（NPROF +1 ）$=X$ STAT $(N S T A T+1)=X P L O T(N P L O T+1)=1 . E+30$
CALL STRIDO
I $A X=100000$
TFND $=100000$
FF（KFX．ERO．I）IEND $=0$
LASTFO＝20nO
IPROF $=2$
$K \mu=1$
$k S=1$
$k T=1$
ルIリIニ・01
11．IVIE＝01
0XLIが＝0．05
FFA＝．n＇
$\wedge F A=.25$
C Wal argip forward step for test case no． 16 To COVER longer distance JF（KASENO．E（．1G）FHA＝．125

1- $\operatorname{TO} 14_{1} J=1 ; N E(J$
THOE (J) $=1$
INDE(JM) $=2$
$\operatorname{IRUF}(1)=\operatorname{IRUF}(2)=0$
IVCF $=2$

CHAPTFR 2 .
C*4**\&SELECTION OF DEPENUENT VARIARLES
DATA JU,JK, JU.JHS,JA,JG,JTE,JLE,JUV,JB/1,2,3,4,5,6,7,8,9,10/
C
C - FiJu, i)....Axinl velocity
C F(JK,Y)....KIHFTIC ENERGY OF TURBULENCE
C. F(Jo,i)....uissifatiniv rate

C F(JHS.I)...STMGNATION ENTHALPY
C F(JA,T).... MASS FRACTION OF HYCROGEN SPECIES (HZ,H,H2O,OH)
C F (JG;I)...MEAM S (JJARE CONCENTRATION FLUCTUATIONS (OF H ELEMENT)
C F (JTF, I)...ABSOLIJTE TEMPFRATURE
C F(JLF.I)...DISSipation leivgth sCale
C F (JUV, L)... REYINOLIDS STRESS CORRELATION (UV)
C F(JB.I)....MASS FRACTION OF SPECJES B
C.

C: aHandxilitary vakiables
c
C FS(JHR,I) . COMCENTHATION OF HTC
C FS(JH,I)...CONCENTRATION OF H
C FS(JOH.I).. CONCENTRATION OF OH
C FS(JHRO,I). CONCENTHATION OF HZO
C FS(JND,I)..COMCENTKATION OF D?
C FS(JO.I)...CONCENTRATION OF 0
C FS(JND,I).. CONCEITTRATION OF N?
C
DATA JH?, JOC, JOH.JH2O,JH.JO, JHZ/1,2,3,4,5,6,7/
C *\#\#!OLECILAR WEIGHTS (AND THEIK RATIOS)
DATA (WM(J),J=1,7)/2.016,32.0,17.008,18.016,1.008,16.0.28.016/
WhO = WM(JO)/WM(JOH)
wTO=1.-4R
WSO=M1 (JO)/WH(JHZO)
Mr $0=1 .-W$ n

CHAPTFR 3
C***\#\#CONSTAUTS
c ***MATEPTAL FONSTANTS (S.I. UNITS)
GLSCRN=8314.
GAMMA $=1.4$
C a\#ACHFMJCAL FOULIHRIUM CONSTAINTS AND ENTHALPIES
CALL LANGGL
C HattIRGMENGF CONSTANTS
$A K=.4$
$A L M B=.11$

CMUIN=.09
CONST=1. CO OHT (CMUIN)
crujerauin
$\mathrm{CF}=1.4 .3$
$C \cdot F=1.42$
$C \mathrm{Cl}=$?. H

c. "\&"Spricification of praniditloschnidot numbers

PRT(JU) $=1.0$

```
    PPT (NK)=1.0
    PRT(jN)=1.3
    PHT (JHS) = . }
    PHT (JA)=.7
    PRT (JA)=.7
    PRT (JF) =.7
    D() 4n] J=1,NEQ
    401 PR(J)=1.0
    FAl=4.E゙-04
    F^2=.875
    F:IALL=9.
    H=.9
    CHIT=O.
```



```
CHIAPTFH}
C#&###SPECIFICATION OF GEOMETRY
    KRAU=?
    CSALFA=1.
    R(1)=YIN
    RFAO(5,50त) (Y(I),I=1,NP1)
    OO 4O l=1.NHI
    IF(I|NR゙.FO.1) Y(I)=.I#Y(I)
        40
            IF(KF^U.FR.2) GO T0 2H3
    OO in? I=1,NPI
    ] A\overline{2}}R\textrm{R}(I)=1
    GO TO l&1
    183 DO "20n I=1,NP!
    200 R(I)=P(1)+Y(I)#CSALFA
```



```
CHAPTFR 5
C##*##IN:ITJAL CONDITIONS
    101 DO 45n I=1.NP1
    450 P(I)=PHESS
        IF(I|NF.EO.1) GO TO 723
C ###CONTYNUOUSS PHOFILES
    YWl=YN1*YOUT
    YMd=YMd-YIN
    |Wl=(|WI#|)IN
    IW!2=IM\ + I
    REAO{5,50n) (F(JU,I),I=1,NP1)
    RFAO;(5,SOn) (F(JTE,I),I=I*NP1)
    READ(5,SON) (FS(JH2,I).I=1,NPI)
    IF(IO?.E.O.1) HEAD(5,500) (FS(JOC.I), I=1,NPI)
    IF(INP.EO.1) GEAO(5,500) (FS(JN?,I),I=1,NPI)
    TF(IH?O.EO.1) REAO(5.500) (FS(JH2O,I),I=1,NP1)
C ###NASS FMACTION OF HYOROGEN ELEMENT
    OO lnS I=I.NPI
    105 F(JA.I) =FS(JH?,I) +FS(JH,I) +WNOWFS(JH?O,I) + WTO"FS(JOH,I)
C ##&RATIO UF nXYGEN ELEMENT TU NITROGEN IN OUTER STREAM
    OFAC=FS(N\capR,NP1) +NSO&FS(JH2O,NP1)
    OFAC=OFNC/(OF^C+FS(JN2,NP1))
C ##CONVFRSION OF INITIAL PROFILES
            DO 45 I=1;NF1
        F(J(I,T) aF(JU.1)##1IN
    4.5 F(JTF.I)=F(JTE,I)#TA
C ###TURBI|.RNT KINFTIC ENFRGIFS BY NIXING LENGIH HYPUTHFSIS
    Di) 10&8 I=?.N
```



```
    IOAQ O|OY(T)=0MOY(I)#NUUY(I)
        DHDY(1)=П|l)Y(1FP1)=0.
C #B#DHFINF CHARACTERISTIC SHFAR LAYER WIDTHS
            |FEF=.'\*F;JU.1)+.1#U*M
            DO ln&Z I=1,NDI
            IF(F(JU,T).LT.|AEF) GO TO 1063
    1n62 CONTINUE
```



```
        YW?=YWl-Y川Z
        YWZ=ALMG*
        JF(KASEHO.EU.1G) GO TO 870Z
        |REF=.1#UW1+.7*F(JU,NP1),
        DO 1 每4 I=IWI,NPI
        IF(F',JU.I).GT.UREFF) GO TO 1065
    1OGZ}\mathrm{ CONTTIUE
    1065 Y&3=Y(I-l)+(Y(I)-Y(I-I))"(UREF-F(JU,I-I))/(F(JU,I)-F(JU,I-I))
        Y\u 3=Y\N 3-Y:,1
        Yw3=人LMG*YM3
```



```
    OO lतんG I=l,IMl
    lOAK F(JK,T)=CONST*Y&%#YW`##UUPY(I)
        DO loGT I = IW?.NPI
    1067 F(JK,I)=CONST*Y:3*Yw.3*OUNY(I)
        Dn lnc,* I=l,NH1
        -AKMI!=FAl*F(JiJ.I)*F(JU,I)
    2068 F(JK.I)={MAA1(F(JK,I),AKMIN)
C H##DISSjPATION HATES
        Y:Z=YUR/ALMG&FA?
        Yu3=Y|S/ALHGG*FA?
        DO lOK9 I=1,I:|
    10&9 F(JO.T)=F'(JK,I)*SORT(F(JK,I))/YWZ.
        DO ln70 I=IW?.NPI
    lnTn}F(JO,I)=F'(JK,I)&SQHT(F(JK,I))/YW
        @OTO417
    773 CONT JNUE
C W*STEF PUQOFTLES
            R&AO(5,G0年) HI,UE,TI.TE,O2E,AN2E,H2OE
            NP1);=N+1/て
C **&construct linemar velocity piofille
            (D) 1.! I=1.NP1
            YRAT=Y(I) Y(NNPI)
            F(JU,I)=ilT+YRNT*(UF-|I)
            IF(J. R.T.NPlUT) GO TO 454
            F(NTr.I) =T I
            FS(Jト^,I)=1.
            FS(Jr>, I)=0.
            Fs(J!:>-I)=0.
            FS(J+iว\),I)=0.
            Gri Tn ll
    45\overline{A}F(JTE,I)=TE
            FS(JH2,I)=0.
            FS(NO2,I)=0Cr
            FS(JN2,I)=NHアK.
            FS(JH2O.I)=H2OE
    12F(JA,I)=FS(JH2,I) +FS(JH,I) +W(O)MF?(JH?O,I) + IVTO#FS(JOH,I)
            OFAC=FS(J\capC,ND1)+WSO*FS(JHCOO,Nil)
            OF^C=\capF^C/(OFNC+FS(JNZ,NPl))
```

```
            ALNTH=-8.4Y(NP1)
            |GRAO=(UE-\I)/Y(API)
            UGRADEUGRAD*ALNG*ALNTH
            |GRAN=CONST*HIJRAD#UGRAD
C **"TUREILLEHT KINF.TIC ENERGIES
            00 4%2 I=2.N
    472 F(JK,I)=UGRAD
            O\cap 473 I=1,N+2
            AKMIN=FAl &F(JIJ,J)&FF(JU,I)
    473 IF(F(JK,I).LT.AKNIN) F(JK,I)=AKMIN.
            \LambdaLNTH=FA2*ALNTH
C ***DISSIPATION RATES
            0O 474 I=1,NP1
    47% F(JO,I)=FF(JK,I)*SOAT(F(JK,I))/ALNTK
C ###STAGNATION ENTHALPIES
    417 DO 4O I=1:NPI
            CALL lAMgLZ
        49 F{JHS,I)=FNTH(I) + .5*F(JU,I)**2+F(JK,I)
C. ###MEAN SNUARE CONCENTRATION FLUCTUATIONS (OF H ELEMENT)
            DO 12 I=1;NP1
        1立F(JG;,I)=F^1*F(JA,I)*F(JA,I)
```



```
CHAPTFR }
C#####OMEGA UISTRIHUTION
    00 50.I=1;NP1
    VNIX=0.
    DO 107 J=1.NS
    107 VMIX=VNIX+FS(J.I)/WM(J)
    HHO(\dot{T})=P(T)/GASCON/VGIX/F(UTE,I)
    5n}\mathrm{ THETA(I)=RHU(I)#F(JU,I)*F(I)
    DO 50.5 I =2,NPI
    ZFTA=. SH(THETA(I) +THETA(I-1))W(Y(I) -Y(I-I))
    505 ON(I)=OM(I-1)+ZFTA
    PSII=[ilo(1)*F(JU,1)*YIN
    JF(KRAD,E\cap,Z) PSII=,5*PSII*YIN
    PSIE=OM(NPI)+PSII
    PFI=OM(NP1)
    DO 5nG I=2,NP1
    5\& \capM(I)=OM(i)/PEI
    CALL.STRIOL
```



```
CHAPTER }
C*&&&&THERMODYNAMIC AND TUHBULENCE PROPERTIEES (START OF MAIN LOOP)
    100 RONTINUF
        TF(ISTLP.RE.IAX) KJN=3
            IF(ISTEP.RE.IFND) KEX=1
C ##LIMITS ON SPECIES MASS FRACTION
            FAMIII=1.E-30
            FAMAX=1.
            OO 455, I=1,NPl
            F(JA.I)=AMIN1(F(JA,I),FAMAX)
    455F(JA.T)=ANAXI(F(JA,I),FAMIN)
C ###LIMITS ON TURHIILFNCE PROPERTIES
    FGMIHE1. F-3U
    FKMIN=1.F-SU
    D() 600 I=1,NPI
    F(JG;,I) =\MAXI(F(JG,I),FGMIN)
    FKMnX=F(Ji|,I)4F(JJ.I)
```

```
            F(JK,T)=ANIN1(F(JK,I),FKM&X)
            F(JK,T)=AMAX1(F(JK,I),FKMIN)
            FIMIMFF゙(JK,I)"SOPT(F(JK,I))/Y(NPI)
    AOO}F(J0.I)=n|nXI(F(JO,I),FOMIN
            DP=|P\capX&DX
            IF(ISTEP.E(.0)) FO TO 425
C
*#HLOCAI. MASS FRNCTIONS
            C.ALL LANGL3
C ##LOCAL PRESSURES AND TEMPERATURES.
            D() GOl I=1,NP1
            P(I)=P(I) +DP
    601 FNTH(T)=F(JHS,I) =.5*F(JU,I)*#2-F(JK,I)
            CALL LANGL4
            DO 6O? I=I,NPI
            TF(F(JTE,T).GT.O.) GO TO 1083
            WRITF(6,270こ) F(JTE,I),I,ISTEP
            IFIN:=1
1OA3 VHIX=O.
    Do lng J=l,its
    109 VHIX=VHIX,FS(J.[I/HM(J)
    Anj RHO(I)=P(T)/GASCON/VMIX/F(JTE,I)
    425 CONTJNUE
    IF(IFTN.FQ.1) GO TO 117
```



```
CHiPTFRRA
C*4&4*TRANSPOHT PROFERTIES. PRESSURE GRAOIENT AND FORWARD STEP
    IF(KIN.NE.? ) GO TO 5?2
    IF(KRAL.E゙N.2) GO TO 521
    YIN=r.SII/(RHO(l)*F(JU.l))
    GO TO 5%2
    5?1.YIN=SOHT(ABS(2.*FSII/(RHO(1)*F(JU,1))))
    R(1)=YIN
C #&SPREAOING RATE
    5P.う CONTJNUE
        C.ALL YINTI.5.YHA.JUS
            IF(ISTEH.F(O.U) GO TO 239
            DYHA=(YHA-YHALS)/(XU-PXU)
            DDYHA = (OYHA-DYHAV)/DYHA
    239 YHALS=YHA
            OYHAV=OYHÄ
            PXU=XII
    O38 CALL STRIN2
            IF(ISTEP.NE.O) ro TO 137n
            IF(K^GE.NF.R) GO TO 1370
C
        ##STREA!H FUNCTIUN AT DIICT WALL
            PSIK^0SIE +.5*RHO(NP1)*F(JU.NP1)*(ROUCT*#2-R(NP1)**2)
            ROURAR=2.*PSIK/R!OUCT**2
    137n} IF(KEX.EQ.1) KONFIN=1
            GO TO (71.72) -KONF{N
        71 IF(ISTEP.FQ.IFND) HDUCT=II(NP1)
            IF(IVCF.EN.2) GO TO 1338
        ##GPNSSA VERGION OF PHESSUKE GRANIENT FOR CONFINED FLOWS
C ###PASNALCII_ATI\capN OF PHESSURE AOJUSTHENT
```



```
    IF(IETEF.FFO.0) GC TO 7?
```



```
    AFLOH=05*!H(NP1)*H(NPL)=4(1) #R(1))
    PSIOIF=PEI
```

```
            ROIJHAR=PSTDIF/ADUCT
            1HAK=O.
            On 73 I=2.N
        73 1H3AH=11BAR +.54H(OM(I)#F(J|.I)
            ROBAP=HOUAAH/IFAR
            DIIDP=-1./(RUUESAR+(RJE(JJ)-RJI(JU))*DX/ADUCT/UBAR)
            UOROOP=ROIIBAR/GAMMA/PRESS
            DROU=ROUBAR"(AFLDM/ADUCT-1.)
            NP=DFONU/(ROGAR#DUIPP+UDRODP)
            |FAC=חP&DIDP/|BAR+1.
C ###\triangleDJUSTMENT OF VELOCITY, PRESSURE AND DENSITY
            DO }74\quadI=1;NP
            F(JU,I)=FiJU.I)#UFAC
            P(I)=P(I)+DP
    74 RHO(I)=RHNO(I)*(1.*GAHMA*OP/P(I))
            DPDX=\capPDX DP/DX
C #**HECALCIMLATION OF DISTANCES
    CALL STHIDZ
    10) TO 72
C &#&GENMIX VERSION OF PRE:SSURE GRADIENT FOR CONFINED FLONS
    133& STORF=THAR
            THAARzn.
            |EAI{=n.
            00 1.340 I=?,N
            TRAR=TBAR +.S#FIOM(I)*FF(JTF,I)
```



```
            IF(ISTEP.RF.IFND) RFLOW=Q(INPI)
            TF(ISTEP.HF.IFNO) GO T0 9719
            THAR=(PSIT*F(JTE,I) + PEI#TGAR+(PSIR-PSIE)#F(JTE,NPI))/PSIR
            |HAR=(HSJY#F(NU,I)+PEI#URAR+(PSIK-PSIE)#F(JU,NPI))/PSIR
            JF(ISTEP.FO.0) GO TO 7?
            DP=-FOOUBARHUBAR*(1.-STORF/THAR)
            RFLOM=SQRT(R(HP1)**2+2.*(PSIR-PSIE)/(RHO(NP1)*F(JU,NPL)))
    9719 CONTINUE
            yF(ISTEP.OE.IENND) DP=-ROUBAR#URAR#(1.-STORE/TBAR)
    RFXO=(KFL\capW-RD)UCT)/RDUतT
    OP=DP-AFA#ROUHAR#UHARWREXD
    IF(ISYEP.rT.IEND) DP=DP-?.*RJE(JU)/R(NP1)##2#DX
    DF=Dr/(1.-ROUBAR&UBAR/P(1))
    DPOX=ПP/DX
C ##FORWARI STEP
    7う DX=FП\triangle&Y(NPl)
    IF{IUNF.E\cap.1) DX=FRANR(ND1)
    IF(ISTEP.LY.SO) DX=DX*FI.OAT(ISTEPWI)/50.
    JF(ISTKP.GE.IEND.AND.ISTEP.LE.IEND+9) DX=.1*DX#FLOAT(ISTEP-IEND+I)
    IF(ARS(REXD).GT..005) DX=0X*.005/ABS (REXD).
    DX=APMNI(DX;XIUAST-XU)
    xn=x(1,0)x
```



```
CHAPTFR }
C****#,ADJUSTNENT OF ROUNDARY CONDITIONS
C ##&FREE ROUNDARY VALIJES ADJUSTED IN STRIDE (3)
    TF(KIN.EO.2) GO TO 95.
    RHI= R.
    TF(KPAU.ĖQ.ċं) R(J)=0.
    Y|N=?.
    PSII=n.
    95 IF(KFX.NE.1) GO TO 196
```

```
            F(JU,NPI)=0.
            RJF. (J\Delta)=0.
            F(JK,NP1)=0.
            F(JI),NFl)=0.
            F(J(G,iNN) =0.
            F(JTE,NPL) =TDUCT
            r=NP1
            CNLI_ LNNGL?
            F(JHSONPI)=ENTH (NPI)
```



```
    CHNPTFRR 20
    C*&&##TRANSPORT ANO ENTRAINMENT PROPERTIES
        d9G CNLL ^UX(JJ)
            IF(ISTEFP,FE.IENID) RME=0.
    C ##SNNTRAINHENT CONTIOL
    C - ##NESTPICT ATTEHTION TO VELOCITY AND TEMPERATURE CHANGES
            IF(KIN.NE. ?) GO TO 94
            RMI=P(3) #raMB/Y(J)
            RHI=HHI/PRY(JN)
            RAT=AAS((F(JU-2) -F(JU,1))/(F(JU,NP1)-F(JU,1)+1.E-30))
            AMGN=\DeltaHS(jF(JTE,己)-F(JTE,I))/(F(JTE,NP1)-F(JTE,1)+1.F-30))
            RAT=AM4X1;(RAT,AMGN)
            IF(RAT•LT.ULI:1I) RNI=RRMI*|AAT/ULIMI
        97
            IF(KFX.NFE. ?) (GO TO 97
            RNF=-H(NM1)"GNMN/(Y(NP1)-Y(NM1))
            RINE=Rリビ/PRT(JN)
            RAT=ABS((F(JU,N)-F(JI,NP1))/(F(JU,NP1)-F(JU,1)+1.EF-30))
            AlGGH=ABS(;F(JTE.N: -F (JTE:NPI))/(F(JTE,NP1)-F(JTE,1)+1,E-30j)
            RAT=ANANXL'(RAT, AMGN)
            TF(HAT.LT,ULIME) RME=RME#RAT/ULIME
        97 IF((f:FII-RNE)$|X.I.T.PFI $DXLIM) GO TO 96
            DX=1)XI.IM&FPEI/(RNI-RMFE)
            XD=x|l+|x
        95 CONTIMUF
            IF(K゙ASE.ER.1) OO TO 96O
            IF(ISTEP.RE.IEND) GO:TO '3ヵD
C &##NOJUSTMFNT UF FOHWARO STEP FOR JET TO.REACH DUCT WALL
            IF(R(NH1).LT..999#RDIJCT) GO TO 960
            TENO=TSTEP+1
            XFND=XU/YOUT
            UPITF(6,5n8) IEND,XEND
    GAO CONTYNUE
C FHADJUSTMENT OF FOHWAKO'STEP TO REACH AXIS OF SYMMETRY
    IF(KIN.NE,2) GO TO 195
    IF(PSII.GT.KMI*OX) GO TO 195
    DX=PsII/RNI
    XI)=X(1+UX
    IAX= ISTEP+1
    X\capX=XD/YOITT
    WRITE(6,5n7) IAX,XAX
```



```
CHaPTFR 1l
C**&##OUTP|T
    195 IF(ISTEH.NE.O) GO TO 193
    CNLL NUTPI
    CALL OUTPj
    CALL OUTP3
    OO TO 113
```

```
193 XUD=XH/YOHT
    IF(X|IT).LT.XST^T(KS)) GO T"
    KS=KS*1
    `ルL&の听方
321 TF(XIJN.LT.XHROF(KPP)) GO TO 112
    KP=KF+1
    CALL OUTPB
1Iう IF(ISTEP.NE.IAX.NNO.ISTEP.NE.IENDI GO TO 1.13
117 CMLL OUTP`
    CALL OUTP3
    JF(IFIN.EN.1) GO TO 1001
```



```
C **$F!HI|ATSTATE゙HFNTS
    5n号 FORMAN(7F10.3)
    501 FORMAT(ZF10.3.14)
    507 FORMAT(/LHO,4--MIXING LAYER REGION ENDS AT ISTEP=#,I5,3X,#LENGTM O
            IF POTFNTIOL CORE =*,F7.?,* DIANEYERS*/)
    50A FORMAT(/IHO,#--JET RFACHFS DUCT WALL AT ISTEP=*,I5,3X,*DOWNSTREAM
            1DISTANCE =*,F%.2.* DIAMFTENS*/%
    1)50
    11.5? FORM^T(1P7E11.3)
    Z70う FORMAT(/1HNO&--- NEGATIVE TEMPERATURE OF*,IPEII.3:*.CALCULATEU AT
            INODE#,13,# AT ISTEP=*,IS)
```



```
CHAPTFR 1?
C*&***CONTINUATTON/TERMINATION
    113 JF(ISTEP.FE.LASTFP.OH.XU.GE゙.XULAST) GO TO 1001
        CALL STRIDJ
        GO TO 100
    1001 CONTJNUE
        STOP
        END
```

COMPILER SPACE

SIIRKOITINF AUX（J）

$4 X D, X(1, Y(4 \dot{O}), Y D I F(40), Y E, Y I, R J T E(10), R J T I(10)$
COMHON／CJS／JU，JK，JD，JHS，JA，JG，JTE，JLE，JUV，JB COMINN／CF ¢／JH？，JOZ，JOH，JH？U，JH，JO，JNZ

1DUDYSO（40），EMUL（40），EMUT（40），IPD，PR（10），PRT（10），RTW（40） COMMON／AUXST／TOA（40），U1P COMMON／CIGHA／SCH（40）

IF（J．NE．J！！）GD TO 299
C
－
$\rightarrow-$ IGNOFF ATOMIC AND．RADICAL CONCENTRATIONS
DO GG $I=1: N P I$

Enul．（I）$=0$ ．
C－－－HYOROGE゙（HZ）

$-\infty-$－XXGFN（ 0 O）

C－mNITHONEH（NX）

C－－－UATER VAPOUR

69．FMUL（T）$=$ EM（JL（T）／SUM
C＊＊\＆DFTERMINATIUN OF ACCELEHATIDN，PARAMETER
$\triangle C C=A B S(A C C-A H S(A C C))$
CALL YINTi，リソ，YRS，JJ）
$\wedge C C=.5^{* Y R S * A C C / A P S(F(J U .1)-F(J U, N P 1)) ~}$
$\triangle C C=\wedge C C * * \dot{n}, 2$
IF（ISTEP．FQ．O）GO TO 74
C WFWALIIATION UF INTEGRATED PRODUCTION／DISSIPATION RATIO
IF（IPO．NE．2）©O TO 73
IF（ISTEP．LT．S）GO TO 74
IF（ISTEP．FO．S）GO TO 152
IF（MOD（JSTEP，10）．NE．0）GO TO 123
$15 う$ TPER＝TPERT＝TR＝TRI＝0．
DO SG I＝2．，NPI
$T R P=T R$
TR＝ENMT（I）＊DUDY（I）＊R（I）
$T R I=T R I+.5 *(T R+T R P) *(Y(I)-Y(I-I))$
TPERP＝THER
TPFR＝NTH（T）＂TR
5 क TPERI＝TPERI＊－5\＄（TPER＋TPERP）＊（Y（I）－Y（I－1））
PIIMP＝PDE
PDE ニTPERI／TRI
IF（ISTEP．NE．5）PDE＝．5＊（PDE＋PUAP）
$\mathrm{H}=\mathrm{Z}$ ． A
ALPHA $=.55$

$r=1-(1 .-n L P H A \# P \cap F) / W$
$r_{1}=G /(1+(P D E-1) / W)+.ね 2$
$\mathrm{r}=7.4 \cap 7 \mathrm{H}_{\mathrm{G}} \mathrm{F}(1 .-A L P H A) / \mathrm{W}$

```
        12.3 CMU#.nY4%%.05.344ACC
            gn Ti 1?1
            73 CMU=. nY*.044"ACC
                IF(JPO.EQ.3) CMU=.09
            rio TO l?.1
            74.GHU=CMUIN
            121 RTCNI=SORT(CNUS)
                    AKCD\cap=AK/CMU$$0.75
                            |lP=F(JU.1)
C ##NXIAL VELICITY GRADIENTS
            OHOY(1)=0.
            DLDY(NPI)}=0
            DUDYSQ(1)=0.
            DUDYSA(NP1) = n.
            YOIFP=Y(3)-Y(Z)
            DUDYF}=\triangleARS(F(JU,3) - F(JU,Z))/YDIFP + I.E-30).,
            GO TO (2, ,,2): KIN
            1 DUDY(2) = 10.5#YDIFP + YI)/YI * DUDYP
            G0 T0 3
            j OLDY(R) = YI/(0.5*YOTFP + YI)#DUDYP
            3 DUDY50(Z)=.DINOY(Z)$*2
            DO 9 I = 3. NML
            YDIFM = YDIFP
            YDIFP = Y'II I) -Y(I)
            GUDYP= = DUDYP
            OHDYF = ARS((F(JIJ.I+I) - F(JU.I))/YOIFP + i.E-30)
```



```
                            GO TO (4,5,5), KEX
            Z OUDY'(N) = (1).5HYDIFP. & YO/YEHDUDYP
            an TO 17
            5 DLDY'NN) = YE/(0.5$YDIFP + YE)&DUDYP
            17 आUOYSO(N)= UHDY(N)#&2
                        \Omegan 12 I=1.NP1
                        DUOY\leqn(I)=nUOY(I)*#2
            13 RTW(I) =F(J0,I)/(F(JK,I)+l.E-30)
                    C **#TIHGGULENT VISCOSITY FORNIJLATION
                        DO 1п.30 I=?,N
                            EMUT(I) = CNU&HIHO(I) aF'(JK,I)/RTN(I)
    10.3n}F(JUV,I)=-EMUT(I)*DUNY(I)/RHO{I)
            DO 1033 I=2,NPl
    1033 TF(F',JU,I),LT.F(JU,I-I)) F(JUV;I)=-F(JUV,I)
C W&#NDD I.AMINAR AND TUNBULENT COMPONENTS
            IF(C1:IT) 1050,1050.1052
    105त DO 1051 I=?,N
    20.51 GAM(I)=EM(LL(I) &EMUT(I)
        TO TO 106%
    In5j DO lot I=?,N
            IF(EMITT(I)-EMUL(I)*CRIT) 1060.1060.106I
    20Gते rAM(I)=EMILL(I)
        FMUTiTl=0.
        GO TO 106
    1061 GAMM(Y)=EMML(I) +ENUT(I)
    1ng, CONTINHE:
10んう EHUT!|)=0.
            EMMT(NP)) = 0.
C WWANIAI, HRFSSURE GRAUIENT (SOURCE TERM)
        AAM:GEGAM(3)
        TAMM=(GAH(NHI)
```

```
            DO 1Jl I=1.NPI
            SU(I)=-IOPOX
        111SO(I)=0.
            RFTUPN
```



```
        C****+TIIREULENT KINFTIC FNERGY
        299 IF(J.NE.JK) (口) T0 399
            DO 20l I=う,N
        OO1 RAM(I)=EMIL(I)/PR(JK) +EMUT(I)/PRY'(JK)
            DO P! P I = 1.OPl
            SU(I)= EMUT(I)*DUDYSQ(I)
    >1弓 SO)(I)=-HTM(I)*HHO(I)
            IF(KIM.HE.l) GO TO 215
            FJK&=-RJI(JU)/(R(1)*RHO(1)*RTCMU)
            SH(Z)=1.E30%FJK?
            SD(?)=-1.F30
    215 JF(KFX.IVE.1) RFTTHRN
            FJKN=RJEF(JU)/(R(NP1)&RHO(NH1)&RTCCMU)
            S|(N )=1.E3!|#FJKN.
            Sח(N) =-1.ESO
            PETUFN
```



```
C***\psi#DISSIPATION HATE
    399 IF(J.NE.JD) G() T\cap.499
    DO HOl I=弓̈,N
    H01 RAM(I.)=FMMLL(I)/PN(JD) + EMIIT(I)/PRT(JD)
    DO 31n I=1.NP1
    SU(I)=CEl#E:MUT (T)#RTM(I) *DUUYSO(I)
    CF2=1.72-.0667#nCC
        IF(INN.E゙O.2) CF.?=1.9P-. 1336*ACC
        IF(ION-EGQ3) CEQ=1.9?
```



```
        TF (YTN .NE: 1) (OO TO 812
        S(1(2)=FJKう**1.5/AKCDO/Y(2)41.E+30
        Sl(2)= = 1. F3!
    HIJ IF(KFX.NF.I) RF.TINRN
    Sll(N ) =FJKN *#1.5/AKCOC/(Y(NP1) %Y(N ))$1.E30
    SD(N) = -1.EOO
    RF.TUPN
```



```
C### iै& STAGHATION ENTHALPY
    .499 TF(J.NE.JHS) GO TO 599
C *##PRANITL/SÖHNIDT NUMBFAFS FOR NEAR-WALL.REGION (ROTTA)
C ---^XISYMMETRIC FI.OWS ONLY.
C-mN.H. SAME RELATIONSHIP FOR SPECIES DIFFUSION
    IF(KRAU.EतC.1) GO TO 331
    IF(KFY.ME.1) GO TO 331
    0O 33\cap I=1,NPI
    YM=1:-R(I)/K(NPI)
    330}\textrm{SCH}(j)=.95-.45#Yツ&Y
    @\cap TO 33?
    3.31 DO 33.7 I=1,NPi
    333 SCH(Y)=PRT(JHS)
    33j DO 30il I=?,iv
    ZO1 FAM(I)=FMML(I)/PR(JHS) +EMUT(I)/SCH(I)
    DO 3пl I=1. NUl
    .70う S D(I) =F(JU,I)$$?
    OO 303 I=j,NH1.
```

```
    FACl=(SCHi(I)-1.)*(GAM(I)+GAM(I+1))/(YDIF(I)+1.E-30)
    303 S O(I)=F^Cl*(SO(I+l)-S D(I))*0.5
    DO 307 I=?,NM1
    FACR=(SCH(I)/PRT(JK)-1.)#(GAM(I)+GAM(I+1))/(YOIF(I)+1.E-30)
3075 D(j)=S D(I) & FAC?**F(JK,I+I) FF(JK,I))
    SO(1)=0.
    SD(N)=0.
    nO 3n4 I=弓̈,N
304 SU(I)=(SD'(I)-SO(I-1))*2./TDA(I)
    DO 305 I = 1, NPI
3n5 c0(1)=0.
    Su(1)=v.
    S|(NFI)=0.
    RETHEN
```



```
C**###:MASS FRACTION OF HYOROGEN ELEMENT
    599 IF(J.NE.JÖ) GO) TO 699
    OO 901 I=う,N
    -QO1 GAM(I)=EMMIL(I)/PF(JA)+EMUT(I)/SCH(I)
    DO 9O? I=1.NHI
    40\overline{2}}\textrm{SU}(I)=SD(J)=0
    RETUEN
```



```
C #*WAFAN SNUARE CONCENTHATION FLUCTUATIONS (OF H ELEMENT)
    699 IF(J.NE.Jr.) 60 T0 799
            YDIFF=Y(3)-Y(?)
            DCDYF=AES;(F(JN,3)-F(JA,2))/YDIFP+1.E-30)
            JF(KIN.EQ.l) GO T0 711
            OCDY=YI/(.5*YDIFP+YI)*DCDYP
            DCDYSO=i)CDY4*?
            SH(2)=CGl#DCOYSQ#ENUT(2)
            SO(ว)=-CG弓&KTM(2)*RHO(2)
            S\1(1)=1.
            SO(l)=-CGj#RT:4(1)*RHO(1)
            mo Tn $12
    711 G?=(@JI(J)/R(2)/FHO(2))*#2*CGl/CG2/FJK2
            SH{系=(%?4].E.30
            SII(?)=-1.F+30
    715 DO 7!O I=3,NM1
            YDIF:=YOIFP
            YOIFF=Y(I_I)-Y(I)
            OCDYM=DCDYH
            DCOYP=AlSS((F(JA,I +I)-F (JA.I))/YOIFP+I.E-30)
            DCDYSO=((\ddot{Y(I+l)-Y(I-1))/(YOIFP/OCDYM+YDIFM/DCDYP))*#2}
            SU(I)=CG1#DCUYSQ#EMUT (I)
    71n SD(I)=~C(G2*RTW(I)"HHO(T)
            JF(KFX.EO.1) GO TO 713
            DCDY=YE/(.5"YOIFP+YE)*DCDYP
            DCDYSQ=DCDY*##
            SU(N)=CGI#DCOYSO&EMUT (N)
            SD(N)=-CO2*HTW(N)*RHO (N)
            s|(NF))=0.
            (1)(NP1)=-rGC#HTW(NP1)*RHO(NP1)
            RHTIHFN
    713 GN=(PJL(J)/R(N)/PHO(N))"#L|CGG1/CG2/FJKKN
            su(Ni)=(IN*) . E + 3n
            SD(N)=-1..F+30
    799 CONTINUE:
```

```
    GIRRROITINF STHIDF
    DIMEH!SION AHL(40),HO#1T3(40),OHS(40),PHOM(40),PGOH(40),THL(40)
    DJMENSION A(40),H(40),C(40),0(40)
    COML{NN/GFNKAL/NCC,CSNLFA,DPDX,DX,FNTH(40),F(10,40),FFS(10.40),GA:4.,
```



```
    OKRAO,N,NEO,NPI,NN1,O\(40), OMO(40),HOM(40),KAST(10),PEI,PSIE,PSII,
    3P(40),R(4न),RHO(40), PaE(10),RJI(10), RivE,NHI,SO(40),SU(40),WH(10).
    4XO, XH,Y(4n),YOIF(40),YE,YI,RJTE:(10),RJTI(10)
    COMMON/CJC/JJ,JK,JO,JHS,JA,JG,JTE,JLE,JUV,JB
    COMMON/CF &/JH?.,JO?, JOH, JH2U, JH, JO, JINZ
    COMMOM/MUXST/TOA(40), U1P
    COMMON/WFCT/FOTFS(20, 2),TS(20,2),GP(2)
    COMMOM/CPROP/IO2,IN2,IH2O,OFAC,NR,NS, WOO, WRO,WSO,WTO,GASCON, GAM1:IA
```



```
C#### STRI\capF (0)
C. ***CONTROL INOICES
    FNTRY STRTDO
    NPl=N!+1
    Nial=N-1
    NM(1)=0.
    OM(NH1)=1.
    GAM3- = 0.
    G^MN=O.
    ISTEF=0
    TF゙IN=O
    TUTHAP=2
C #&#ZFHOTNG OF IMPORTANT ARRAYS
    DN 3F.3 J=1.NEO
    KAST(J)=0
    353 RJE(J)=RJT(J)=0.
    DO 354 I=l,NPl
    00 354 J=1,NS
    35% FS(J,I)=0.
    OO 35,5 I=1,NP1
    00.35, J=1,10
    355 F (J,T)=0.
    DO 35% I=1,NH1
    35% FNTH(T)=0.
    RFTHDM
```



```
C%3*4 TTRIDE (1)
C ***OHEGA KELATIOINSHIPS
    HNTRY STRTDL
    O(1)\ I = 1. N
    OHD(T)=OM(I+1)-0!r(I)
    10n OMS(T)=OMiI I +1)+ON(I)
    [O 101 I = 3. NM]
    BOM(J)=OM(I+I)-0i((I-I)
    HOMT3(I)=ROM(I)*3.
    101 CONTINUE
```



```
    HON(N:1) = 弓. - OM(N) - OM(NMI)
    Ol'z = ON(3)/(1HO(?)
    0143 c 2. - 0川?
    0ルS? = (M, 3)"*?
    0nS3= OM(2)**?
    O|SZ = OMSR/(OMST-OMS3)
    OMS3 = 1. - OMS?
```

```
    OMN = (OMD(N) + OMD(NML))**2
    (N:TNI! = Om|(N)**2
    OlIN = OMN/(OMN - OMNMI)
    OlANHI] = 1. OMN
    Y(l)=0.
    RP(1)=1.
    BP(r)}=1
    TNDE (JU)=1
    INDI(JU)=1
    RfTUNTS
```



```
C#4## STRI\capE (?)
    FNTRY STRTDC.
C ##*TEST FOR NEGATIVF. VELOCITIES
    1010 IF(IITKAP.E(N.0) GO TO 1011
            DO lnlC I = ?.N
            TF(F(JU,I).GT.O.1 GO TO lUl2
            WHITE(6,1j00) F(JU,I),I,ISTEP
    IフOj FORHAT(/IHO,*--. NEGATIVE VELOCITY OF#,IPEIL.3,* CALCULATEO AT IVIO
        1E*,I3.* ^T ISTFP=*,IS)
            F(JU,T)=1.F-30
            IF(IUTRAP.GF.l) IFIN=1
    101亏 IF(IUTRAP.GT.P) ITEST=1
C *##CROSS-STRTAH UISTANCES (Y#S AND R#S)
C #&二FDGE REGIGNS
    1nl1 RUP = RUO(?) * F(JU,Z)
    R(1)=F%HO(1)胡(J).1)
            RURAT = RI|l/RIMP
            GO TO (1013,1014,1014), K[N
    1014 GO TO (101A,1019), KRAO
    In1& BP(1)=0.333333+0.0666674RURAT
    GOTTO 10\J
    1019 BP(1) = (R(1)#(S.*RURAT+l.) + 3.*R(2) *(RURAT+1.1)/(R(1)+R(2))/6.
    1013 YI = DE゙I # UM|(1)/(13P(1)*RUP)
            RUNP1 = RHO(NFP1)*F(JU,NP1)
            R(IN = RHONN) *F(JU,N)
            RURAT = RUNPI/RUN
            (%O TO (10#0,1021,102.1), KE\lambda
    10?1 &O TO (10>4,1025), K'NAD
    1024 HP(2)}=0.333333+0.666667*HURAT
            (i0 T\cap lnzon
    1025 RP(2) = (R(NP1)*(5.*RURAT+1.) + 3.*R(N)* (RURAT + 1.) )/(R(NP1) +R(N))/6.
    102白 Y = PFI##MD(N)/(GP(2)."RUN)
C &&&Y\not=S, R#S, TUA\not=S AND YDIFF#S
```



```
            Y(P) = YI
            YDIF(l)= 人.*YI.
            DO loll I = त, NK1
            TOA(j)=PET*BOM(I)/RUP
            R|M=RUH
            R(IP=I:HO(I+l)&F(JU:I+L)
            YO[F(T)=PRI*OND(T)#(2./R|NM+2./FUS)
    1017 Y(I.+1)=Y(i) +YiiIF(I)".5
            TOA(P')=PEY*BOM(N)/RUP
            Y(NP)!)=\ddot{Y}(N)+YE
            Y[IF(N) = 2: YE
            IF(K(PAU)FO.1) RETURN
C. ###MNDIFICATIONS FOIR AXTAL GYFIMFTRY
```

```
    1123 TF(CSMLFA.F(N.O.) GO TO 1110
C ##SSLFA MF. ZERO
    COSD2=0.5#「こSALFA
    IF(R(I).NF.O.1 GO TO 1105
C &i*R(1) EEQ. ZERO
    ON 11nO I = 2, NPI
    Y(I)=s(v!PT;ABS(Y(I)/COSDZ))
    110& R(I)=Y(I)#CSALFA
    GO TO 1107
C ##&R(1).NE.ZENO
    1105 R1DR=.5*R(1)
    RIDCSO=R1D?*R1D2
    DO 1104 I = 2.NP1
    Y(I) =Y(I)/(R11)2+SORT(ABS(R1D2SQ+COSD2*Y(I))))
    1]nï R(I)&R(1)+Y(I)*CSALFA
    1107 DO lin8 I = 1.N
    110& YOIFII)=YDIF(I)$4./(R(I) +R(I+1))*$2
    GO TO 1112
C. ##$CSALFA -ER. ZFRO
    111\00 1111 I = 2,NP1
    Y(I)=Y(I)/R(I)
    1111 R(IL=R(1)
    R]S(N=[(1)**2
    O\cap 1!0' I=2,N
    11\cap9 YOIF(I)=YDIF(I)/R1SQ
    111% YI = Y(2)
    YF=Y(NP1)-Y(N)
    RFTUPN
```



```
C&4*& STRINE (3)
C ###SNIN NUIIERICAL METHOD
    FNTHY STRTDS
    IF (KIN .FQ. 1) CALL WF(1)
    IF (KFX .FQ. 1) CALL WF(2)
C ##PPELIMINARIES
    3000 G=RMI-RHE:
    PX=PFI/IXX
    PD4=.25*PX
    CO4=, 25*G
    PGD4=PU4*ROU4
    RMID2=.5$RMI
    PGOH(1)=0.
```



```
        THL(j) = 0.0
        O\cap 3010 I = 2. N
        HL=HMTDP-6D4*OMS(I)
        THL(J)=2.*HL
        AHL(I)=ABS(HL)
        PrOOM(T)=PGD4*i)MD(I)
    3n1n}\operatorname{PROM(I)=PX*HOM(I)
    C ###START OF J LOOP
    DN 33?O J=1,NEO
    IF(J.NE.JII) CALL NUX(J)
    TTP=R.
    Hrionm = 0.
    ROAM(MP1) = 0.
    C *#&SETTYNG UP COFFFFICIENTS
    AKAST = FLOAT(1 -KAST(J))
```

```
            KAST1 = KAST(.1) * 1
            INDEYI=INDI(J)
            INDEXF=INDF(J)
            DO 3nO4 I=2,N
            SU(I) = Sil(I) # TDA(I)
            SD(I) = SD(I) TDA(I)
            PGONIM = PrOMP
                    PGOMP = PGOM(I) * AKAST
                            TTM=TTP
                            TP = (GAMII) +GAM(I+I))/YOIF(I)
                            TTP= TP + AHL(I) + ABS(TP=AHL(I))
                            A(I)=TTP-THL(I)-PGOMP
                            B(I)=TTM+THL(I-I)-PG\capNM
                            [ND]=?/I
                            INDP=1/(NP1-I)
                            INDEX=1 +INDI + INDZ'
                            GO TO (303,305), INDEX
    30360 TO (304, 305), KAST1
    304}C(I)=PO4*(BOMT3(I)*F(J,I)+OMD(I)*F(J,I+I)+OMD(I-1)&F(J,I-1))+SU(I
    GO TO 306
    305 C(I) ¢0&OMiI)4F(J,I)+5U(I)
    30& D(I)=PGOMiI)=SD(I)
C ##MODIFICATTONS FOR HOUNDARIES
            JNDEX=1+IND1+2*INDZ
                            GO TO (30n4,3009,3002), TNDEX
3\capO\dot{& A(I) EA(I) +PGOM(2)बAKAST}
            B(I)=?.*R"I
                            fO TO (30n9,31104,3004), KIN
3n09 GO TO (3n1l.3(103), INDEXI
3n11 TT=2.*TS(J,1)
    B(I)=AMAXI(TT+B(I),0.)
    C.(I) =C(I)-TT&FDIFS(J,I)
    GO TO 300%
3003 B(I)=0.
    D(I)=n(I)+2.4RMI
    C(I)=C(I)+2.4RJTI(J)
    ror TO 300%
3n0う H(I) =A(I) +PGOM(NMI)*AKAST
    A(I) =-द.*AME
    GO TO (3012,3104), KEX
    301j an TO (3013.3005), INDEXE
3013 TT=?."TS(J.2)
            A(I)=A!1AXI(TT+A(I),0,)
            C(I)=C(I)-TT*FOIFS(J,2)
            in To 3004
    3005 A(I)=0.
            O(I) пП(I)-2. #HME
            C.(I)=C(I)-2.*!\JTF(J)
    300/4D(I)=D(I)+A(I)+B(I)
C ##ADJUST FRFE-HOUNDARY VALUES
                    RU1 z RHO(1) *F(JU,l)
                            TF(KIN.NE. 2.OR.RU1.FM.O.) GO TO 3006
                            F(J.1) = iF(J.1)+SU(1)*NX/RU1)/(1.-SD(1)*OX/RU1)
3OO& R(NNP1=IPHO/NP1) *F (JU:NPI)
                    IF(KFX.NE.,Z.OR.RUNH1.EQ.O.) GO TO 300%
                    F(J,NP1)= = F(J,NPP1)+SU(NP1)*DX/RUNP1)/(1.-SO(NP1)*DX/RUNP1)
C ###SOLVF:FOR DOWINSTHEAM F#S
    3007 B(2)={(R(2)#F(J,1)+C(2))/ח(?)
```

```
        A(2)=A(己)/D(己)
        DO 3n2l I =3.N
```



```
        A(I)=A(I)/T
    .3021 B(I)=(B(I)*H(I-I)+C(J))/T
        DO 3022 IDASHEl,NM1
        T=NP1-IOAsH
    3(i?j F(J,I)=A(Y)4F(J,I+1);日(I)
C ##ADJIST BOIINDARY VALUES
            G0 TO (3210,3220,3230), KIN
    321ก GO TO (30n,3211)% INDEXI
    3`I1 RMT=RMI +TC(J,1)
        RJI(J)=RJTI(J)=RMI*F(N,1)
        IF {PIMT .aT. O.\ GO TO 307
        F(J,1)=F(J,2)
        GO TO 3220
    307F(J.1)={(RJTI(J) + TS(J,l)*(F(J,2) + FDIFS(J.1)))/RMT
    go To 322n
    30\dot{q RJI(J) = TS(J,1) * (F(J,1)-F(J,2)-FOIFS(J,1))}
        RJTI(J). = RJI(J) + RMI&F(J.l)
        GO TO 322i
3フ3ñ IF(R(1).EN.O.) GO TO 309
    F(J,-1)=F(J,Z)*OMS2+F(J,3)*OMS3
    G0 T\cap 3?2n
    309F(J.i)=F(J,R)*)M2+F(J,3)4OM3
3220}\mathrm{ GO TO (331n,3320,3330), kEX
331n GOTO (31%,3311). INDEXE
3311 RMT=-RME-TS(J.2)
    RJE(J) = RJTE(J) - RME&F(J,NPl)
    TF (PMT .̈TT. O.) GO TO 317
    F(J,NP1)=F(J,N)
    GO Tn 332n
    317F(J,NP1)=(-RJTE(J) + TS(J,2)*(F(J,N)+FOIFS(J,2)))/RMT
    GO TO 332n
    31& RJE(J)=-TS(J,2)*(F(J,NP1)-F(J,N)-FDIFS(J,2))
    RJTE(J) = RJE(J) + RME#F(J,NP1)
    GO TO 332尔
    3330}F(J.NPL)=F(J,N)*OMN+F(J,NML)*OMNM1
    3320 CONTINUE
        X1: = X n
        ACC={F(NU.1)-1.1P / /DX
        PSII=PSII-RMI*DX
        PSIF:OSSIE~RMEWDX
        PEI=PSIE-PSII
        TSTEF=ISTEP+1
        RETURN
        END
```

COMPTLFR SPACE

```
        SMAROUTINF WF (K)
            COMMON/GFNRAL/ACC,CSALFA,I\PDX,OX,ENTH(40),F(10,40),FS(10,40),GAM3,
            J.GAMN,GAM(40),J,IFIN,INDE(10),INII(10),ISTEP,IUTRAP,ITEST,KEX,KIN,
            PKlZAO.N,NEO,NP},NP:I,O!(40).UMD(40),BOM{40),KAST(10),PEI,PSIE,PSII,
            3P(40),R(4n),RHO(40),RJE(10),RJI(10),RME,RMI,SO(40),SU(40),WM(10),
            4XD,X(1,Y(4ती),YI)IF(40),YE,YI,RJTE(10),FIJTI(10)
                COMMON/CJE/JJ,JK,JD,JHS,JA,JG,JTE,JLE,JUV,JB
                COMMIOM/CFSS/JH?., JO?, JOH.JHZCO,JH, JO, JM?
                COMMON/CTIRR/AK, NLMG.CMII,CMUIN,CEI,CE2,CGI,CG2,CRIT,DUDY(40),
                    IDUDYSQ(40), EMUL(40), FMUT(40),IPD,PR(10),PRT(10).,RTW(40)
            COMIAON/CWWF/YR(?), IRUF (2), EWALL,H
            COMPONN/WFST/FDIFS(20,2),TS(20,2), BP(2)
            COMMON/CIrMA/SCH(40)
```



```
            DATA SHALF/.04/
            GO TO (10.11).K
        10 In'=1
            IN=?
            ro To l2
        12 IV:=NP1
            IN=N
        j% CONTINUE
C *&&RFFERFNCE RUAINTITIES
            |REF=AUS(F(J|,IW)-F(JU,IN))
            RHORFF=0.5*(RHO(IW)+RHO(IN))
            RUREF=RHOREF WIJRFF
            RREF=R(IN)
            RPURFF=RRRFF +RUREF
            VREF =FMULIIW)
            YREF=\triangleHS(\ddot{Y}(IN) -Y(IN))
            HF=RURGF& YREF/VREF
            AR:=(FMI~(RME-KMI) HOM(IW))/RRUREF
            FF=-SU(IW) &YRFF/RUNEF/UREF
    12う IF(RE.LT.132.25) GO TO 110
C ###LOG LNW ASSUMPTION
    1?1 CONTINUE
            LAM=0
            NIT=n
    101 SHALFI=SHALF
            YHP=RYH*SHALF
C. ###CALCIILATION OF E FOR ROUGHNESS
                    F=ENALL
                            IF(IPNF(K),EQ.O) GO TO 16
C
## SAND-GHAIN ROUGHNESS
    IF(YRP.GT.3.3333) E=30./YRP
    1* FR=RF&E
    S=SHANF゙あ#う
    GLOC=S+AM+EF
    IF(SIOC.GT.O.) GO TO l04
    SLOC=1.E-30
    SHALF=SNRT(ABSS (AN+EF))
    INA BEE=SOHT (SLOC/AK)
        AFG=FR*(SHALF*(AM/(1.+BEE) +.5*EF)/SHALF)
        JF(APG.GT.11.*E) GO TO IOG
        mo TO llo
    IOM SHALF=AK/^LOG(NH(;)
    IF(AAS(SHALFOSHALFL).LT..DOOI.OH.NIT.GT.IO) GO TO IUZ
    NITENIT+1
```

```
        GOTO lol
    HP(K)=1./il.+GEE)
    GO TO 103
    C ##LAMIN!AH FLOW
    11%
            AHRF=AlIHRF
            FHE=EF#HE
            JF(ANS(AMREC).l.T..O1) GO TO 111
            FXPMNFF=FXP (AMHFF.)
            STOKE=EXPMRE-1.-AMRE
            ANRES()=AMRE*A!IRE
            SRE=AMRE&;1.-STORE&FFRE/AMMESO)/(EXPMARE-I.)
            OUT = SRE#STORE./AMRES($ FRE* (STORE-.5*AHRESQ)/(AMRES(##AMRE)
            GO TO 112
    111 SRE=(?.-FRE*(1. + AMRE/3.))/(2.+MMRE)
            OUT1 =SKE*(.5 + AMRE/6.) +FRE*(.16667+AMRE/24.'
    11亏 TF(SFE.GT,1.E-30) GO TO 113
            SPF=1.t-3%
            NUT1=.33333
    113 S=SHF/RE
    AP(K)=OUT1
    103 DO 5000 J=1,NFO
    FOIFS(J,K)=0.
    IF(J.FN.JHS) FOIFS(J,K)=(N-1.)*.5*UREF##
            IF(J.NE.JII) GO TO 200
            TS(J.K)=S*RHULEF
            GO T0 500n
C *#STAGNATION ENTHALPY AND MASS FRACTION
    ?OO}\mathrm{ CONTTNUE
            IF(RF.LT.1.32. 25) GO TO 210
            IF(L_MM.E゙Q.1) GO TO 210
        OOL CONTJNUE
            PRRAT=PR(J)/PMT(J)
            IF(KPAD.E\cap.?) PRAAT=PR(J)/SCH(N)
            PJAY=9.*(PRHAT-1.)/PRRAT**. 25
            SF=S/(PRT(J)*(1.*PJAY*SHALF))
            JF(KPAL.E'R.2) SF=S/(SCH(N)*(L.*PJAY*SHALF))
            GO TO 2l3
C #*&LAMINAR FLDW
    210 [F(ARS(AMRF).LT..O1) GO TO 211
            SF=AM/(EXXP(PR(J)* AMRE)-1.)
            GO T\cap 2l?
        211 SF=1./PR(J)/RE/11.*.5*PR(J)#AMRE)
    ?lj CONTINUE
    21.3 TS (J.K)=SF#RRUREF
500N CONTINUE
            RFTURN
            ENO
COMPTLFR SPACE
```

 DIMENSION CHMN 7,60 ），PTEMP（40），RCON（10），STGRE（10），REM（10） COMMON／GFNRAL／ACC，CSALFA，DPDX，OX，ENTH（40），F（10，40），FS（10，40），GAM3，
 FKRAO，NOMEO，NPI，NNL，OP（40），OMO（40），POH（40），KAST（10），PEI，PSIE，PSII，
 $4 \times 0, X(1, Y(4 \dot{n}), Y(1 F F(40), Y E, Y I, R J T E(10), R J T I(10)$ COMNON／CJC／JU，JK．JD，JHS，JA，JG，JTF，JLE，JUV，JB COMMON／CFG／JHT，JO？，Ji）H，JHZO，JH，JO，JNZ
 COMMON／CTIRB／AK，NLHG，CNU，CHUIN，CEI，CEZ，CGI，CGZ，CRIT，OUOY（40），
IDUDYSO（40），EVIJL（40），FMUT（40），IPD，PR（10），PRT（20），RTW（40） COMMON／CPROP／IOR．IN2．IH2O，OFAC．NR，NS．WOO，WRO，WSO，WTO，GASCON．GAMHA

CHAPTFR 1
CW\＃\＃\＃\＃LOADING OF EGUULIEHIUM CONSTANTS，ENTHALPIES AND SPECIFIC HEATS FNTRY LNNFLI
C．＊HREFEPFNCE ENTHAIPIES
DATA $(H O(J), J=1,7) /-2023.6 .-2074.7,7205.6,-60164.7,50616.5,57949.1$ 1．－207？．3／
C ＊\＃CHEMTCAL FQUILIHRIUN CONSTANTS

DO $20 \quad J=1: N R$
$\operatorname{HEAO}(5, J 0$ ก̃o $\quad(\operatorname{RC}(J, I), I=I, 60)$
－DO $2 \pi I=1,60$
RC（J．T）＝ANINI（RC（J，I）．100．）
2n RC（J．I）$=1$ ñ．+ ＂RC (J, I)
C \＃\＃CONSTANTS FOH gLOAAI．REACTION
（0） $15 \quad I=1.60$
$15 \operatorname{RC}(5, T)=R C(4, I)$＊FC（3，I）／（RC（1，I）＊SORT（RC（2，I）））
C $\quad 4$ CONVERSION INTO CONSTANTS FOR CONCENTHATION RATIOS

$\wedge 30=\operatorname{WM}(J O H) / W R i(J O) / W M(J H)$
$A \angle O=$ V．l（JHつO）／WM（JOH）／HM（JTi）
＾SO＝リM（JHनO）／MM（JH2）／SORT（WM（JO2））
0） $571 \quad i=1,60$
RC（1，T）$=$ RÖ（l，I）WA1O
$R C(2, I)=R O(Z, i) * A 20$
$\operatorname{RC}(3, I)=\operatorname{RO}(3,1) \$ 430$
$R C(4, I)=R O(4, I) \$ \Lambda 40$.
571 RC（5，I）$=$ RO（S．I）$\$ 450$
C＊\＆FINTHALPIES AND MEAN SPECIFIC HEATS
DO $3 n \mathrm{~J}=1$ ：NS
CFA三4） 67 ． 1 MM（．）
HO（J）$=H O(J)$ \＃CFA
RE゙AD（5，20n0）（HT（J，I），I＝1，60）
DO 3 n $I=1: 60$
$H T(J, I)=H T(J, I) * C F A$
3 n $\operatorname{CPBAR}(J, I)=014(H T(J, I)=H O(J)) / F L O A T(I)$
${ }^{C}$
＊FTERATION PARAMETERS
IHEGIN＝3
TTNAX＝12
C．C＝．$n 1$
HPC＝． 5
$R P D=1 .-12 P \ddot{r}$
r

FSTOICH＝2．＊WM（JH2）／WM（JO？）
$N R P=N H+1$
HF TUREN

CHAPTFF 2
CねねゅみぁTNITIAL FNTHALPIES
FNTHY LANAL？
ENTH（I）＝0．
$F \wedge C X=01 \# F(J T E, I)$
IFACX $F F A C X$
FACS＝FACX－FLOAT（IFACX）
On $115 \mathrm{~J}=1$ ，NS
FNTL＝HT（J．IFACX）＋FACS＊（HT（J，IFACX＋L）－HT（J，IFACX））
115 FNTHiI）＝ENTH（I）\rightarrow FS（J，I）＊EMTL
RF．TUF：N

CHAPTFH 3
C＊＊＊\＃\＃LOCAL MASS FRACTIONS
FNTRY LANGL． 3
C \＃\＆LOCATE POSITION WHERE HYOROGEN CONCENTRATION IS STOICHIOMETKIC
$X=1-F(J A: 1)$
$x=x * \cap F A C$
IF（FF（JA，1）／（X＋1，E＝10）．LT．FSTOICH）GO TO 625
Dr，6？ $1=1$ ，NP1
$X=1 .-F(J \Delta: I)$
$x=X$ \＆$\cap F A C$
$P A R \Lambda=R A T-1 . E-10$
RAT＝F（JA， $\bar{Y}) /(X+1, E-10)$
IF（HAT．LT．FSTOICH）GO TO 1060
ADI CONTTNUE

ILOCr＝I
$F A C M=Y(I-1)+(Y(I)-Y(I=1)) /(R A T-P A R A) H(F S T O I C H-P A R A)$
GO TO 626
h25 IL．OCH＝O
J $1 . O C P=1$
6？A DO PRA ION＝1，INPI
$T=N P I+1=I D M$
IF（I．LT．ILOCP）GO TO 740
GO TO 742
74 I $=1 \operatorname{LOCP}-1$
$74{ }^{7}$ TSM $=\mathrm{AMAXI}$（F（JTF，I），250．）
C \＆\＃CONCENTRATIONS OF OXYGEN ELEMENT AND NITROGEN
XNZP日＝1．－F（JA．I）
$X=O F \wedge C * X N う P O$

RAT＝F $(J A, T) /(X+1, E-1 n)$
DO $304 \mathrm{l} .=1$ ，NS
30ム STORF（L）＝
C HAFOUILTBRIMM CONSTANTS AND MEAN SPECIFIC HEATS FOR UPSTREAM STATE
$F A C X=.01 * T S M$
IFACX＝FACX
FACS＝FACX－FLOAT（IFACX）
DO 1 ก5S $L=1$ ，NizP
1055 RCOM（1．）＝AF（L，IFACX）＋FACS\＃（RC（L，IFACX＋I）－HC（L，IFACA））
CFAC＝QトU（T）＂（inSCON\＃F（JTE．I）\＃L．E－US
DO $1050 \mathrm{~L}=1$ ，NR
1，54 RCON（L） $\operatorname{RRCON(L)\# CFAC}$

```
                    RCON(|MPP)=RCOIN(NRP)"SQRT(CFAC)
                    OO 3]7 Lal,NS
        317.CPMN(L,I)=CPBAR(L,IFACX)+FACS*(CHBAR(L,IFACX+I)=CPGAR(L,IFACX))
                TTER=n
                IF(.NOT. (TOZ.EQ.U.AND.IH2D.EQ.0)) GO TO I7S
    C ##SOLUTIOH OF QUADIRATIC EUUATION FOR HYOROGEN-NITROGEN MIXTURES
            FS(JH,I)=SOHT(1.*4.*F(JA.I)*RCON(1))
            FS(JH,I)=, 5* (FS(JH,I)-1.1/RCON(1)
            FS(J+1?,I)=F(JA,I)-FS(NH,I)
            GO TO 208
        175 CONTINUE
    C ###START OF YTEERATION CYCLE
    C **#DETERMINE LARGEST TERM IN EACH GROUP
    C -m-FQUATION FOR OXYGEN ELEMENT
        Jl=J\cap?
        F|!I=FS(JDЭ,I)
        IF(FS(JO,Fi) LT.FS(JOR,I)) GO TO 220
        Jl=\n
        FMl=FS(JO:I)
```



```
            J2=JH?O
            F|\ = FS(JHÖO:I)*$SO
        211 IF(FS(JOH.,I) WWHO.LE.FM1) GO TO 350
            Jl=J\capH
            FHI=FS(JOK,I) #NRO
        35\hat{n}\mathrm{ CONTJNUE.}
C --mFOUNTYON FOR HYDROGEN ELFMMENT
        J?=JH?
            Fl:2=FS(JHう,I)
            JF(FSS(JH,F).LT.FS(JH2,I)) GO TO 212
            J?= JH
            FliP=FS(JH:I)
    212 IF(FS(JHZN,I)#WNO.LT.FMZ) GO TO 253
            JP= JH?O
            FMP=FS(JHうO,I)#川OO
    253 IF(FS{JOH'.I)WMTO.LE.FM2) GO TO 353
        J7=JलM
        FH2=FS(JOH,I)#WTO
    353 CONTINUE
Ca|& PRECAlIIION IF H2G IS LAFREST OF FOTH GROUPS
        IF(.NOOT.(JJ.FQ.JH2O.AND.JZ.EQ.JHZO)) GO TO 279
        IF(RNT.GE.FSTOICH) GO TO 356
        Jl=J\cap?
        FMI=FS(JOZ.I)
        IF(FS(JO,T)=LT.FS(J02.I)) GO T0 622
        Jl=J0
        FMI=FS(JO:I)
    ADj JF(FS(JOHK.I) WWRO.LT.FMI) GO YO 379
        J]= JOH
        FMl=FS(JOH,I)&WRG
        GO TO 379
    356 J2=JH?
        FMP=FS(JHう.I)
        JF(F\subseteq(JH,T).LT.FS(JH?,I))GO.TO 361
        JR=JH
        FH?=FS(JH:I)
    361 IF(FS(JOH.I)#NTO.LT.FNR1-GO TO 3%U.
        JPaJOH
```

```
            FMZ=FS(JOH,I)*WTO
            GO TO 379
    279 CONTINUE
C*&* PRECAUTION IF OH IS LARGEST OF I,OTH GROUPS
        IF(.HOT. (JI.EO.JOH.AND.J?.EQ.JICO)) GO TO 379
        IF(RAT.GE.FSTOICH) GO TO 367
        Jl=Jn?
        FMl = FS S (J02,I)
        TF(FS(JO,\overline{Y}),LT,FS(JOZ,I)) SO TO 358
        Jl=Jn
        FMl=FS(JO:.I)
        35A IF(FS(JH2N,I)#WSO.LT.FMI).GO TO. 379
            Jl=J人つO
            FM1=FS(JH2O,I) #WSO
            GO TO 379
        367 Jご=Jい?
            Fl.&=F'S(JHう,I).
            IF(FS(JH,T゙).LT.FS(JH?.I)):GO TO 382
            J?=Jゃ4
            FHQ=FS(JH.I)
        391 TF(FS(JHZO,I)"WNO.LT.FMZ) GO TO.37.9
        Jつ=JHつO
        FMR=F゙S(JH5O.I) &WMO
        379 CONTINUE
C ***)VFR-RIDING PRECNUTION
        IF(F(JA,I).GT..9999) Jl=Jri己O
        IF(F(JA.I).LT..000L) J?=, JH20.
```



```
            [F(Jᄀ.NE. JHIZ.AND.J2.NE.JH) GO TO 241)
            [F(J?.E.).JHZ) FS(JH,I)=S\capHT(FS(JH2.I)/RCON(1))
            IF(Jञ.EO.JH) FS(JH2,I)=FS(JH,I)*#C*RCON(I).
            IF(J1.E(N.JHZU) GO TO 233
            IF(J].EQ.JOH) GO TO 427
            IF(Jl.EO.JO) FS(JO2,l)=FS(JO,I) ##?#KCON(Z)
            IF(J].EO.JO己) FS(JO,I)=S@HT(FS(JO2,I)/RCON(2))
            FS(JHวU,I)=FS(JH?,I) &SQRT(FS(JO%,I))#RCON(5)
            FS(JOH,I)=FS(JO,I)#FS(JH:I)*RCON(3)
            mo To 290
    233 FS(J\capつ,I)=(FS(JHつO,I)/FS(JH2,I)/RCON(5))**2
    FS(J\cap,1)=s⿴囗T(FS(JO2,I)/RCUN(2))
    FS(JOH:I)=FS(JO,I)*FS(JH,I)*RCON(3)
    *0 TO 290
    4.7 FS(JO.I)=FS(JOH.I)/FS(JH.I)/RCOiv(3)
    FS(J^つ,I)=FS(JO,I)##j*RCON(2)
    FS(JH2O,I)=FS(JH,I)*FS(JOH,I)*RCON(4)
    @O TO <90
    24न IF(J).NE.JHZO) &O TO 250
```



```
    IF(JI.EQ.Jn) FS(JO2,Y)=FS(JO,I)"#2*HCON(2)
    IF(Jl.EO.JOR) FS(JO,I)=SORT(FS(JN2,1 )./RCON{2)}
    TF(JI.NF.JOH) GO TO 430
    FS(J\cap,I)=FS(JNH, T) w&r!/FS(JH20,I) #RCON(4)/RCON(3)
    FS(J\cap?,I)=FS(JO,I)**%*HCDN(2)
    43ñ CONTYMINF.
    FS(JH?,I)=FS(JH?0,I)/S⿴MT(FS(JN?,I))/RCON(5)
    F゙S(JH,l)=CONT(FSS(JHR.I)/HCON(I))
    IF(J),t(0.JOH) GO YO 290
    FS(JOH,I) =FS(.JO.I)*FS(JH.I)4RCON(3)
```

```
            ri) ln 2?0
```



```
    25
            TF(Jl.E゙Q.JO) FS(JOD,I)=FS(JO,I)**2#RCON(2)
            IF(J).E(N.JOL) FS(JO,I)=SNRT(FS(JOL,I)/RCON(2))
            IF(Jl.EM.JHZU) GO TO 501
            FS(JH.I)=FS(JOH,I)/FS(JO.I)/RCON(3)
            FS(JHP,I)=FS(JH,I)**2*RC\capN(1)
            FS(JH?O,I) =FS(JH.I)*FS(JOH,I)*RCON(4)
            GO TO 240
    501 FS(JH!,I)=FS(JH2O.I)/FS(NOH,I)/RCON(4)
            FS(JH?,1)=FS(JH,I)**2"RCON(1)
    50% FS(JO.I) =FS(JOH,I)/FS(JH,I)/RCON(3)
            FS(J\capつ,I)=FS(JO.I)**2*RCON(2)
    ?9' CONTINUE
C &&&RE-EVALUATE LARGEST TERNS FROM ADDITIVE EQUATIONS
            JF{RAT-LE.FSTOICH) GO TO HIO
    M3त̈ CONTJNUE
        FMl=X
        IF(J).NE.JOH) FMl=FMI-FS(JOH,I)WWRO
        IF(J].NE.JOR) FMI=FH1-FS{NOZ.I)
        IF(Jl.NE.JO) FMl=FMI-FS(JO.I)
        TF(J].NF..JHZU) FNI=FML-FS(JH2O,I)*WSO
        FS(N).I) =FN1
        [F(J],EQ.JHCO) FS(Jl.I)=FS(Jl,I)/HSO
        [F(J].E゙(N.JOH) FS(JI,I)=FMI/NRO
        IF(WAT-H.E.FSTOICHI)GOTO-B20
    0I万 CONTJNUE
        FMP=F(JA,ī)
        IF{J>. HE,JOH) FMZ=FM?-FS(JOH,I) #ivTO
        IF(J?.NE.JH?) FMZ=FMふ-FS(UH2,I)
        IF(J?.NE.JH) FMP=FMZ-FS (JN,I)
```



```
        FS(J.O.I)=FMR
        IF(Jح.EG.JH2O) FS(JZ.I)=FMZ/W:30
        IF(Jう.EQ.JOH) FS(JZ,I)=FM2/WTO
        IF(HAT.LE.FSTOICH) GO TO 830
    R2う CONTINUE
        ITFR=ITF.R+I
        ISTAP(I)=TTER
        IF(IYFK.LT.IHFGIN) GO TO GB9
C !&&UNDER-RELIAXATION OF MASS FRACTIONS
    DO Ggar L=l,NS
    FHタ FS(L,I)=RPC*F゙S(L,I) &RPD*STORE(L)
    mR9 CONTyNUE
            DO 325 L={,NS
    3?5 RFM(L)={FS(L.I)-STOHE(L))/(FES(L,I) +1,E-40)
C **&LIMITS ON MASS FHACTICNS
            DO 339 L=1.NS
            FS(L,I)=AMINI(FS(L,I),1,)
    339 FS(L,T)=ANOXI(FS(L,I),0.)
    DO 32G L.=l,ivs
    B?A STORE(L)=FS(L,I)
    RN:^X=い。
    ION 3न'r L=INS
        IF(FS(L.I).LT.1.&-06) G() TO 327
        RHAX=AMAXI(RIAAX,ABS(REM(L)))
    3ア7 CONTJNUE
```

C＊＊＊ONVFRGENCE CHITERION IF（ITEK．GT．ITMAX．OR．ABS（RMAX；．．．．CC）GO TO 208 GO TO $1 / 5$
218 CONTINUE
DO $345 \mathrm{~J}=1$ ．ivs
DO $345 \mathrm{I}=1$ ，NPI
$345 \mathrm{FS}(\mathrm{J} \cdot \mathrm{I})=\operatorname{ANAXI}(\mathrm{FS}(\mathrm{J}, I), 0.1)$
C WHTFST FOR POUR CONVERGENCE DO 82つ $I=1$ ，NDI
3フ27 IF（ISTAR（Y）．FT．ITMAX）WRITE（G，B8Z8）ISTAR（I），I，ISTEN
 ］$A N D$ STEP NO．＊，［4） RETUFN

CHAPTFR 4
Cいみ\＃\＃\＃LOCAL TEMPERATURES
FOTRY LANGL 4 OO 9fil $I=1$ ，Nil
9の13 PTEMP（1）＝F（JTE，I） Dก $405 \mathrm{I}=1$ ，NP」
$S M C=0$ ．
i） 40 O J J＝MS EITH（T）＝ENTH（I）－FS（J．I）＊HO（J）
4nA，SMCESMC＋FC（J．I）＊CPMN（J，I）
$405 \mathrm{~F}(J T F, I)=F N T H(I) / S M C$
C \＃\＃\＆UNDEF－RELÖXATION OF TEMPERATURES IN FEACTION ZONE
ILM＝ILOCM－3
$I L P=I L O C P+3$
I） 140 I $=1$ ．NP1
IF（．NOT．（Y．GE．ILN．AND．I．LE．ILP））GO TO 149
$F(J T F, I)=.5 *(F(J T E, I)+P T F M P(I))$
149 CONTINUE
C＊\＃WFORIMT STNTEMENTS
IOOñ FOKMAT（7F10．4）
2OOO FORMAT（7F10．1）
RFTURN
END

COMPILER SPACE

SLARRCIII INF UITPPIT

DIMENSION FL（X（In），ATITLI（13），ATITLZ（13），AVRHL．E（6•10），ASYMRL（7） COMIAON／GENRAL／ACC，CSALFA，DPDX，CX．ENTH（40），F（10，40），FS（20，40），GAAB3，

COMMINN／CRSD／KFLOM，REXD，KASE
CCMION／CJC／JI•JK，JU，JHS •JA，JG．JTE，JLEE，JUV，JB
COMMOH／CFC／JHㄷ，JOZ，Ji）H，JHCO，JH，JO，JNZ
COMMON／CSTAR／TO（7），CPBAR（\％，60），HT（7，60），RC（5，60），ISTAR（40），FACM

COMAON／OUTFT／IAX，IEND，YIN，YOUT，YHA，DYHA，DDYHA，RQDUCT，KP，KS，KT，

COMMOM／YPIOTB／XTAXIS，XTPLOT（40），YTAXFS（10），YTPLOT（10．40），
IYTMAX（10）．YTSYMF：（10）．OUT（40），IPROF
COMIO：N／CHROF／JOR．INT．IHZO，OFAC，NR，NS，WGO，WRO，WSO．WTO，GASCON•GAMMA

C＊\＆\＆INITIAL VALUES OF INTEREST
FHTRY OUTPL
FSTOICH＝？\＆WM（JH2）／WM（JO？）
FSTOICHEFETUICH／（1．＊FSTOTCH）
READ＇（F，1153）（ATITLl（K），K＝1，13）
READ（G，1153）（ATITL2（K），K＝1，13）

HFY＝「：HC（1）＊F（Jリ．1）＊2．＊Y（NPl）／ENUL（1）
VAiIX＝0．
DC $1016 \mathrm{~J}=1$ ，NS
101；VMIX＝VHIX $+F S(,, 1) / W M(J)$

PHESSI＝FRESS
IIIN＝F（JU，l）
lif IN＝F（JU．Il－F（JU，NPI）
C．IN＝FS（JH？，I）
TIN＝F（JTE＇． 1$)$
C \＃\＃\＃nuTPIIT OF ALPHANIJMERIC OATA

WRITF（G，Iñてえ）（L，（AVRELE $(K, L), K=1,6), L=1$ ，iveQ）
！PITF（0，1 ก23）
VFITF（O，1n24）CMU，CEI，CE2，CG1，CG2，AK，ALMG，CRIT，IPD
URITF（0．1n3（O）（OM（I）．I $=1, N P 1)$
WKITE（G．1－333）NH．NS
READ）（5，1154）（（AVRBLF（K，L），K＝1，6）．L＝1，NR）
山KITE゙（6，1 3 34）

READ（5，1154）（（AVHBLE（K，L），K＝1，G），L＝1，NS）
VRITE（6，1n 35 ）

WHITF（0．1n36）
WHITF（0．1nวゝ）
KFAD（「；•1153）（A5YMBL（K），K＝1，7）
OU 101／J＝1，NE：

RF TURH


```
C ***STaTINN VNRIABLESS
    ENTRY OUTP'?
    XUD=X|I/YO|T
    C ##*MEAN SQUARE FLUCTUATIONS (OF H ELEMENT)
        IF(IO2.EQ.O.ANO. TH2O.EQ.11) GO TO 165
    C *&#LOCATE POEITION OF FLAME FRONT
    C m--ASSUPING #GATTLENENT: VARIATION.OF SHECIES CONCENTRATION.
        OO l&1 I=1,NP1
        RAT=FSTOICH*(1,-FS(JN2,I))
        PARA=SF+i2-1.F-10
        SFHR=(F(JA,I)=S\RT(F(JG,I)))/RAT
        IF(SFHZ.LT.1.) GO TO 16%
    16! CONTINUF
    16ว FACI=Y(I-I)+(Y(I)-Y(I-1))&(1.-PARA)/(SFHZ-PARA)
        OO LG3 I=1,NP1
        RAT=FSTOICH*(I,-F゙S(JNZ,I))
        PARA=SFH2-1.E-10
        SFHR=(F(JN,I)+SORT(F(JG,I)))/RAT
        JF(SFHR.LT.1.) GOTO 164
    163 CONT \NUE
    164 FACE=Y(I-1)*(Y(I)-Y(I-1))*(1.-#ARA)/(SFH2-PAFA)
    165 CONTJNUE
        PRDRF=PRESSI-P(1)
        ULINF=(F(JU,1)-F(UU,NPI))/UE[N
        CLINE=FS(JHC,1)/(CIN+1,F-30)
        TLINE=F'(JTE,I)/TIN
        HFITE(S.INOS) ISTEP,XU,XUO,OX,YHA,OYFA,OUYHA,YDX
        WHITE(G,INOT) KIN,KEX,YIN,Y(NPI),HDE,ACC,CRU,CEC
        HAITF(O,INOD) PSII,PSIE,FEI,HMI,RHE,FACI,FACE,FACM
        WFITF(6-1\cap\capY) F(JU,1);F(JA,1),F(JTE,1),ULINE,CLINE,TLINE,PRDRF
C ###CHECK FOR FLUA}\mathrm{ CONSEKVATION
    DO l \cap27.J=1,NE゙\cap
    F(UX(J)=(F(J,?)*OM{2)+F(J,N)*(l.mOM(N)))*2.
    O0 ln?7 I=2.NH1
    L\cap27 FLUX(J)=FL|X(J)+(F(J,I)+F(J,I+I))4OMO(I)
    DO ln\geq8 J=1,NFQ
    [F(K^ST(J)) 102.9,1029,1028
1029 FLUX(J)=FL|X(U)=.25*((F(J.3)-F(J,Z))&(OM(3)-0M(2))+
    1 (F(J,NM2)-F(J,N))*(DN(N)-OM(NM2)))
InZÁ FL|X(J)=.5&FL|X(J)*PEI+HSII*F(J,I)-PSIE*F(J,NPI)
    WFITF(0,1^30) (J.FLUX(J),J=1,NEQ)
    IF(KASE.EO.2) WRTTE(6,1155) RFLOW,RDUCT,REXD,P(1),OPOX
    IF(KFX.NE:l) RFETURN
    OF=RJF(JHic)/H(NP1)
    TAUE=RJE.(NIJ)/H(NH1)
    HRITE(G,1O10) INDE(JHS),F(JTE,NP1),OE,TAUE
    RFTUPN
```



```
FITRY OUTP3
C W"WHOFILE VARIGBLES
C/ INFORMATYON ;TEMPORARY) ON NEW OUYPUT KOUTINE.
C./ SIIRROUTINE PROFIL. ASSIGNS VAI.UES FOH PLOT, ANO ALSO WGITES
C/ PRIFFILEE. IT IS CAl.LEO HY ...
```



```
C./ WHFHF JPRUFEJ KEFERS TO THE F(J.I) ARBAY
C/ JPR(IF.RT•O NEANS USF F (JPHOF I I) ARKAY AND WRITE PROFILE.
```



```
    C/ JPROF=O MEANS NO ACTION UNLFSS KPLOT.LT.O
    C N.B. OUTEIS ARRAY IS OVEHWRITTEN BY PROFIL.
    C/ TITLE IS THF NAPAF IF THE PROFILE, PLOTTEC GYY SYMBOL.
    C/ FIHST NNU FINAL. ARE FTRST ANO LAST VARIAHLES WHITTEN IN PROFILE
    C/ ADO AND DIV MODIFY PROFILES FROM I=2 TO I=N
    C/ K̈PLOT.GT.() NEANS ASSIGN YTPLOT(KPLOT,I) ARRAY.
    C./ KPLOT=O IFEANS NO PLOT ASSIGNNENTS.
    C/ K̈PLOT.LT.O NEANS ASSIGN THE Y(I) ARKAY TO THE XTPLOT(I) ARRAY.
    C/ SYMHOL IS THE CHIARACTER USED IN PLOT.
    C *##ZERO YTPLNT ARRAYS
            IF (ISTFP.GT. l) GO TO 401
            DO 4O? IEl,NPI
    40う nUT(I)=0.
            DO 40. K=1.10
    4 0 . 3 ~ C . A L L ~ P R U F Y L ( 0 , 1 H * , 0 . . 0 . . 1 . 0 , 0 . , ~ K , 1 H 4 )
    4Ol r.ONTINUF
C **OISTANCES (Y)
            CALL PROFTL( 0.GHY/Y(NP •R(1),0.,Y(NP1),Y(NP1),m1,0)
C ##GXIAL. VFLinCITIES (JU)
            LIV=F(JU.1)-F(JU.NP1) + 1.E-30
            r.ALL PROFTL(JU,GKU ViLLO,F(JU,1), -F(JU,NPI),DIV,F(JU,NPI),1,IHU)
C ##STAGMATION ENTHALPIES (JHS)
            I)IV=F(JHS',1)-F(JHS,NP1)
            CGLL PROFTL(JHS,GHH STAG,F(JHS,1),OF(JHS,NPD),DIV,F(JHS,NP1),0,U)
C ###TIIRGM:LENT KINFTIC ENEHGIFS (JK)
            OIV=(F(JU', ) -F (J!,NP1) +1.E-30)&#?
            CALL PHOFFL(JK,GHK.F.,Tij ,F(JK,I),0.,OIV,F(JK,NPI),5,IHK)
C 4**OISSIPATINN RATES (JD)
            CALL PROFTL(JO.GHO OTSS,F(JD,1),0.,1.,F(JD,NP1),6,1HO)
C ###DISSjPATIMN LENGTH SCALES (JLE)
            DO l2OL I=?.N
    1201 F(JLF,I)=<⿴HT(F(JK,I))/(RTW(I)+1.E-30)
            F(JLF,L)=0゙
            F(JLF,NF1)=0.
            OJV=Y(NP1)
            CALL FHOFTL(JLEE,GHLENGTH,F(JLE,1),O.,OIV,F(JLE,NP1), 10,IHL)
C ***#TURP|LENT VISCOSITIFS# (EHUT)
            MRITF(B,GכR) (EMUT(I),I=1,NPI)
C **OENSITIES
            URITF(6,659) (RHD(I),I=1.NPI)
C ##RFYNOIUS ETRESS COHRELATION (JUV)
            OIV = (F(JU:1) -F (JJ,NP1) +1.Em30)**%
            C.NLL PIROFTLL(JV,GHUV . FF(JUV,1),0.,DIV,F(JUV,NP1),2,1HS)
C &&*SFECIFS MASS FRACTIONS (JA)
            DJV=F(JA,1) =F (JA,NP1)+1,E-30
            CALL PHOFTL(JA,7HF(JA,I),F(JA,1), -F(JA,NP1),OIV,F(JA,NP1),3,1HA)
C#####R.M.G. CONCENTRATION FLUCTUATIONS (OF H ELEMENT)
            DIV=F(JA,1)-F(JA,NP1)+1.E=30
            CALL PKOFIL(JG,THF(JO,I),F(JG,1),-F(JG,NPI),DIV,F(JG,NPI),9,1HG)
C ###nHSOLITTE TEMPFRATUNES (JTE)
            DJV=F(JTE゙:I) -F (JTE,NPl) + I.EE-30
            CALL PHOFFL(JTE,MHTEHP,F(JTE,I),OF(JTE,NPI),OIV,F(JTE,NPPI),M,IGI)
C ###OHITPUT OF INUIVIMIAL SPECIES CONCENTRATIONS
            |n hot5 J=1.NS
    G?5 m&ITF(t,G56) ASYFHL(J),(FS(J,I),I=1,NMI)
            MHITF(D,6%7) (ISTAK(I),I=l,NPl)
C &#PLOTTIWG OF PROFILES
```

```
    GO5 IF(ISTEP.FO.0) RF TURN
    IF(ISTEP.FW.InX.OR.ISTEP.EG.IEND) GO TO 435
    IF(XIO.LT.XPLOT(KT)) RETURIN
    KT=K\dot{T}+1
    435 WFITF(6,1n91) XU,ISTEP
    C\triangleLL PLOTS(XTFLOT, 35.NP1,XTAXIS,YTPLOT,YTMAX,1O,1O,YTAXES,YTSYSS)
```



```
    C ###FIRVIAT STATEMFNTS
```



```
        Aว7 FORMAT(1H,GHITFK, 11I1I/(7X,11III))
        G?A FORMAT(1H ,GHEMUT ,IPILEl1.3/(7X.1PILE11.3))
        62? FORMAT(1H ,GHRHO ,IPIIE11.3/(7X,IPIIE11.3))
```



```
            1=*,1PF11.3.lX,*YHA=#.lPE11.3,1X,*DYHA=#,1PE11.3,1^0,*ODYHA=$,1PE11.
            23.1X,*YDX=#, LPF11.3)
    1007 FORMAT(1X.*KIH=*,I2,lX,#KEX=#,I2,1X,#YIN=*,1PE11.3,1X,4Y(NP1)=#,1F
        1F11.3,1X,#PUE=#,IPE11.3,1X,#ACC=*,1PE11.3,1X,*CMU=#,1PE11.3.1X,*CE
        ??=*,1PE\11.3)
```



```
        21).3,1X.*FACM=*,1PE11.3)
```



```
        II=*,1PE11.3.1X,*MI/MI=*.IPE11.3,1X,*TI/TI=*,IPE11.3,1X,#PRORP=*,1;
        2F11.3)
    10in FORMAT(IX:*INOF(JHS)=",I?,IX,*TWALL=*,IPE゙11.3.1X,*HT,TRANSF.=#,IPE
        111.3.1X,#cHEAR STRES5=%.1PE11.3)
    LO21 FORMAT(1HI,4X,13A6/5X,13AG///5X,*-m-m- ORUER OF DEPENDENT VARIABLE
        IS IS和/
    10%j FORM^T(6x.I2,*. *.6^G)
    ln?3 FORMAT(//lHO,*-- CONSTANTS IN TUREIULENCE HODEL*)
```



```
        ] 3.3X,*CG2=*,FH.3,3X,*AK=*,F6.3,3X,*ALMG=*,FB.3,3X,*CRIT=*,FB.3,3x.
        2*IPM=*,I2)
    102.5 FORMAT(/IHD,*=- PRANDTL SCHMIDT INUNHFKS NRE*/)
```



```
        1.J2)
    ln3ñ FORMAT(5H FLUX, 7(1H(,I2.2H)=,1PEl0.3.2X))
    ln.3. FORMiT(IHN,*-- OVEGA DISTHIBUTION --*/I(4X,IPIIEII.3))
    1033 FURAIAT(/IHO,*- NIMMEER OF REACTIONS =#,I3,10X,*- NUMBER OF SHECILS
        l=*.I.3)
    ln3% FORM!AT(/1HO.5%,*-- REACTIONS ARE*)
    1035 FORMAT(/1HO,5X,#-- CHEMICAL SPECIES ARE$)
    LO3& FORiイAT(////)
    1O37 FORMAT(/1H0,*-*. INITIAL VALUES --*/5X.*REY =*,1PEI1.3/5X,*|ACH=*
        1.1PEI1.3/5X,*YIN =*,1PE11.3/5X,*YOUY =*,1PE11.3/5X,*RDUCT=",1PE11
```



```
        3*T =#,1PE゙ll.3)
    1091 FORMAT(4HIXU=,1PE10.3,8H,ISTEP=,I6)
    1153 FORMAT(13^G)
    1154 FOHMAT(6AR)
```



```
    11X,*FOLSS=*.1PE12.4,1X,#\capPDX=*,1PE11.3)
```



```
        RFTUFN
        END
```

```
            SIMRR(IlITINF PRUFII.(JPHOF,TITL.E,FIRST,ADD,IIIV,FINAL,KPLOT,SYMBOL)
                COMMON/GENRAL/ACC,CSALFA,DPDA,DX, KNTH(40),F(10,40),FS(10,40),GAM3,
        INAMN,GAM(么̃O),I,IFIN,INDE(10),INDI(10), ISTEP,IUTRAP,ITEST,KEX,KIN,
        PKRAD,NOHEO,NPl,NNI,OM(40),OMD(40),BOM(40),KAST(10),PEI,PSIE,PSII,
        3P(40),R(4N),RHO(40),RJE(lO),RJI(10),RRME,RMI,SD(40),SU(40),WM(1U),
        4XD, X(1,Y(4n),Y!IF (40),YE,YI,RJTE(10),PJTI(10)
            COMMNN/CJভ/JU.JK.JO,JHS,JA,JG,JTF.JLLE,JUV, JB
            COMMINN/CFS/JH?. JO?, JOH, JHRO, JH, JO, JN?
            COMMON/TPLOTH/XTAXIS,XTPLOT(40),YTAXES(10),YTPLOT(10,40).
            IYTMAX(10):,YTSYMIR(10),OUT(40),IPROF
```



```
C####*SUBHOUTINF TO NRITE PROFILES AND ASSIGN TRANSVERSE PLOT ARKAYS
```



```
    700 IF(JPRUF) 200,200,100
    Inत゙ O@ I OI I=1,NHI
    101 oUT(I)EF(JPKOF,I)
    20n YH.1^X=1.E゙-30
        DO ZOL I=I,NHI
        YMAX=AMAX](YMAX,DUT(I))
    201 OllT (\tilde{T})=(O|T (I) +ADD)/DIV
        IF(JPROF.NE.O.AND.IPIROF.FQ.1) WRITE(G,9OU) TITLLE,FIRST,(OUT(I),I=%
        ],N),FTNAL
            IF(JPROF,NE.O.AND.IPROF,EO.2) WHITE゙(6,9OO) TITLE,(F(JPKOF,I),I=1,M
        JPl)
            TF(KNIOT) 500.600.400
    Anत゙ DO 4nl I=l,NPl
    4nl YTPLOT(KPLOT,I)=OUT(I)
        YTAXFSS(KPLOT)=TITLE
        YTSYPH(KPLOT) =SYMBOL
        YTMA),(KPL\capT)=YMAX
        RHTUPIN
    50ñ DO 5nl I=1.NPI
-501 גTPLOT(I)=(Y(I)+NDD)/DIV
        XTAXIS=TITLE
        HKITE(0,9NO) TITLE,FIRST.(XTPLOT(I),I=2,N ),FINAL
    GOO RETUPN
    90\hat{O FORMAT(1H,A6,1PIIEII.3/(7X,1PIIEIL.3))}
    FINO
```

COMPILFR SPACF.

SURROITINF PLOTS（X，IDIM，IMAX，XAXIS，Y，YMAX，JOIM，JMAX，YAXES，SYMBUL）

C X and Y are assijafo to be In any range except that negative values ARE PI．OTTED AS ZFRO
X AND Y ARE SCALED to THF RANGE 0．TO d．BY DIVISION BY THE MAXIMA
WHICH ARE ALSO PHINTED
IDIM IS THE VARIARLE DINENSION FOR X ．
TMAX IS THE NUMEER OF X VALUES
XAXIS STORES THE NAME OF THE X－AXIS
JDIM IS THE VARIARLE OIMFNSION FOR Y ．
JMAX IS THE NIMBER OF CURVES TO BE PLOTTEO，（UP TO 10）．
THE ARRAY YAXES（J）STORES THE NAHE OF THE CURVES．
THE ARRAY SYMHOL（J）STORES THE SINGLE CHARACTERS USED FOR PLOTTIIGE
C

DIMENSION X（IDIM），Y（JDIM，IDIM），YMAX（JDIM），YAXES（JDIM），SYMBOL（JOIM）
1．A（10））
DATA DOT，
C\＃\＃\＃\＃SCAL，TNG X ARRAY TO THE RANGE O TO 50
$X F A X=1 \cdot F-30$
DO $1 . I=1$, TMAX
1 IF $(X(I) \cdot G T \cdot X(A A X) \quad X M A X=X(I)$
for 2 I＝1，「MAX
$X(I)=X(I), X M A X \$ 50$ 。
う IF（XIT）．LT．0．）$X(I)=0$ 。
CH\＆\＃SCAI YIVG \ddot{Y} ARTAY TO THE RANGE O TO 100
DO $3, j=1$ ，JMAX
AYMAX $=1 . E-30$
DO $4 \quad I=1$ ， TMAX
4．AYMAX＝AMAXI（AYMAX，Y（J，I））
DO $3 \quad I=1, ~ T M A X$
$3 \mathrm{Y}(\mathrm{J}, \mathrm{J})=A M A X 1((Y(J, I) / A Y M A X) \$ 100 \ldots 0$.
CH\＆＊IDFNTIFYTNG THE VARIOUS CURVES TO BE PLOTTED
WRITE（ 0,1 ñ 3$) \quad x \wedge X I S, X M A X$
WRITE（ 6,1 ño）（YaXES（I），IFl，JMAX）
WRITE（0，1
WRITF（ $6,1 \cap 2)$（YMAX（I），I＝1，JMAX）
DO） $5 \quad I=1,11$
$5 \wedge(I)=0.1 * F L O A T(I-l)$
URITF（6，1n1）（A（I），I＝1，11）
Cね\＃\＃\＃\＃NAIN LOOP，EACH PASS PRODUCES AN X－CONSTANT LINE DO 4 ก $I=1: 51$
IF（I．EO．1．OR．I．EQ．51）GO TO 32
GO TO 33
C＊\＆\＃\＃\＃ALLOCATE OR＊AS MARKER ON THE Y－AXIS
$3 う$ DO $30 K=1: 101$
$3 n^{\circ} n(k)=\cap O T$
DO 31 $K=11,101.10$
$31 \wedge(K)=$ CKOS \dot{c}
C\＃\＃\＃\＃\＃nl．LOCATE．OH＊MARK ON THE X－AXIS，ALSO THE APPROPRIATE X VALUE
33 ＾（1）ÉEOT
A（10））$=$ DOT
$K=I-1$
$4 \mathrm{~A} K=K-5$
IF（K）4R，Z̄7，4

```
        47 A(1)=CROSS
        A(101) zChnSS
        4ন XL=0. nС"FLOAT(I-1)
C*&&$* CHECK IF AIVY Y(X(I) ) VALUE LIES ON THIS X-CONSTANT LINE
C*#4## IF YES GN TO 4I. OTHERWISE GO TO 4Z
            OO 43 K=1:IMAX
            IF(IFIX(XiK)+l.5)-I) 43.41.43
C&$*#4 IOCATE Yi A(I) )
    41 DO 44 J=1: JMAX
            NY=Y(J,K)+1.5
            \triangle(NY)=SYMBOL(J)
        4% CONTINUE:
        *O Tत 4?
        43 CONTIMUE
C##### FRINT X-rONSTANT LINE
    4う 4RITF(6,1n5) KL,(A(K),K=1,101),XL
C*&&## PUTTTNG GLANKS INTO X-CONSTANT LINE
            1)0 49 K=1:.101
        49 A(K) =RLANK
    4n}\mathrm{ CONTINUE
        DO 50 S=1:11
    50}A(I)=.1*FLOAT (I-1
        WRITE(0,1n4) (A(J),I=1,11)
        RETUPN
    Inति FORM^T(11H Y=AXES ARF,5X,10(1X,A10))
    101 FOHMAT(IHN,2X,1IF10.1)
    105 FORMMAT(25H MAXIMUM VALUES,1P1|EI1.3)
    103 FORMAT(1IHOK-AXIS IS ,AB.17H ,MAXIMUM VALUE =,IPE1O.3)
    10% F(IRHAT(3X:11F10.1/1HI)
    105 FORMAT(2H X,F゙6.2,3X,101A1.F6.2)
    1OA FORMAT(7H SYMMOL,11X,1O(1X,A1O))
        END
COMPILFR SPACE
```

```
            SUAROIITINF YINT(FRAC,YFRAC,JJ)
            COMMON/GENRAL/ACC,CSALFA,DPDX,DX,ENTH(40),F(10,40),FS(10.40),GAM3.
            IGAMN,GAH(\ddot{0}0),I,IFIN,INDE (10),INDI(IO),ISTEP,IUTRAP,ITEST,KEX,KIN,
            2KRAD,N,NEOO,NPI,NML,OM(40),OMD(40),BOM(40),KAST(10),PEI,PSIE,PSII,
            3P(40),H(40),RItO(40),RJE(10),RJI(10), RME,RMI,SO(40),SU(40),WM(10),
            4X(), XI:,Y(4त),YOIF(40),YF,YI,RJTE(10),RJTI(10)
                COMNON/CJ:/JU,JK,JD,JHS,JA,JG,JTE,JLE,JUV,JB
                COMHON/CF&/JHZ,JOZ,JOH,JHZO,JH,JO,JNZ
C&#&ओ4JNTEFPOLATION SUHROUTINE
            REFDIF=FRAC*AHS(F(JJ,NP1)-F(JJ,l))
            IF(RFFOIF.NE.O.) GO TO 10
            YFRAC=FRAC*Y{NP1)
            WRITE(f,l) YFRAC
    1 FORMATI7H ISTEP=,I4,4H XU=,IPEIO.3,5ZM IN SUBROUTINE YINT, KEFDIF=
            10. 50 YFRAC=F゙KAC*Y(NP1)=,E10.3)
            HRITF(6,2) FRAC,JJ,NPI,F(JJ,NPI),F(JJ,I)
    3 FORMAT(6H FRAC=,1PEIO.3,4H JJ=,I3,5H NPI=,I4,
        1 11HFF(JJ.NHI)=,E10.3.9HF(JJ.I)=,ElO.3)
            RETUFN
            1^IF(FRNAC.GT..S) GO TO 30
            DO 20 I=2:N
            DIF=NRS(FiJJ,I)-F(JJ.l))
            IF(OIF-REFDIF) 20.21.21
            2l T=ABS(F(JJ,I)-F(JJ,I-1))
        iF(T) 22,23.22
    >弓 T=(OIF-REFDIF)/T
    2.3 YFRAC=Y(I)-T&(Y(I)-Y(I-1))
        RE TIJRN
    2T CONTJNUE
    30}\mathrm{ ON 4n IDASH=2,N
        I=N+?-1DACH
        DIF=ARS(F'(JJ,I)-F(JJ,\))
        IF(DTF-REFOIF) 41.41.40
    41 T=AHS(F(JJ,I) ~F(JJ,I+1j)
        IF(T) 42.43.4?
    4弓 T=(UTF-RFFFDIF)/T
    43 YFRAC=Y(I)-T*(Y(I+I) =Y(I))
    RETUEN
    4ति CONTINUE
        RETUPN
        END
```

COMPILER SPACE
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
-National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.
TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

 PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.Defails on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

[^0]: * In this case there is a siight momentum deficit in the shear flow so, far enough downstream, the velocity within the shear flow would be everywhere less than the free stream velocity.

