7 research outputs found

    The Surfactant Dipalmitoylphophatidylcholine (DPPC) Modifies Acute Responses in Alveolar Carcinoma Cells in Response to Low Dose Silver Nanoparticle Exposure

    Get PDF
    Nanotechnology is a rapidly growing field with silver nanoparticles (AgNP) in particular utilized in a wide variety of consumer products. This has presented a number of concerns relating to exposure and the associated toxicity to humans and the environment. As inhalation is the most common exposure route, this study investigates the potential toxicity of AgNP to A549 alveolar epithelial carcinoma cells and the influence of a major component of lung surfactant dipalmitoylphosphatidylcholine (DPPC) on toxicity. It was illustrated that exposure to AgNP generated low levels of oxidative stress and a reduction in cell viability. While DPPC produced no significant effect on viability studies its presence resulted in increased reactive oxygen species formation. DPPC also significantly modified the inflammatory response generated by AgNP exposure. These findings suggest a possible interaction between AgNP and DPPC causing particles to become more reactive, thus increasing oxidative insult and inflammatory response within A549 cell

    Minerals evaluation in Amazonian medicinal plants

    No full text
    The Amazonian Brazilian offers an appreciable potential of plants with therapeutic properties, although most are little known. In this way, with the objective of verifying the potentiality nutritional of medicinal herbs, a work was developed to determine the concentration of Ca, Mg, Fe, Cu and Zn in the leaves and in the teas of these species: Piper callosum Ruiz & Pav., Piperaceae, Mikania lindleyana DC., Asteraceae e Arrabidaea chica (Humb. & Bonpl.) B. Verl., Bignoniaceae. After the plants samples have been processed, they were submitted to digestion and soon afterwards the metals were analyzed in an spectrophotometer of Atomic Absorption. The results showed the follow yields: for the tea of Arrabidaea chica Ca were detected (6955 to 20058 mg/L), Mg (2390 to 3094 mg/L) and Fe (40 to 61 mg/L). For the tea of Mikania lindleyana besides the presence of high values of Ca (17722 to 22336 mg/L), Mg (4531 to 9370 mg/L) and Fe (20 to 87 mg/L) they were found from 7 to 16 mg/L of Cu and 9 to 41 mg/L of Zn. The tea of the Piper callosum presented 2036 to 4344 mg/L of Ca, 618 to 4023 mg/L of Mg and 39 to 60 mg/L of Fe. Being compared the results of the minerals with the values recommended by the Health World Organization, is possible that the present metals in the teas of the plants could contribute in the complementation of the people's alimentary diets that use these medicinal plants.Amazônia brasileira oferece um apreciável potencial de plantas com propriedades terapêuticas, embora a maioria seja pouco conhecida. Dessa forma, com o objetivo de verificar a potencialidade nutricional de ervas medicinais, determinou-se a concentração de Ca, Mg, Fe, Cu e Zn nas folhas e nos chás das espécies: Piper callosum Ruiz & Pav., Piperaceae, Mikania lindleyana DC., Asteraceae e Arrabidaea chica (Humb. & Bonpl.) B. Verl., Bignoniaceae. As amostras de plantas depois de terem sido processadas, foram submetidas a digestão e em seguida realizada as leituras dos metais em um espectrofotômetro de absorção atômica. Para o chá de Arrabidaea chica foram detectados teores de Ca (6955 a 20058 mg/L), Mg (2390 a 3094 mg/L) e Fe (40 a 61 mg/L). Para o chá de Mikania lindleyana além da presença de altos valores de Ca (17722 a 22336 mg/L), Mg (4531 a 9370 mg/L) e Fe (20 a 87 mg/L) foram encontrados de 7 a 16 mg/L de Cu e 9 a 41 mg/L de Zn. O chá do Piper callosum apresentou em média 2036 a 4344 mg/L de Ca, 618 a 4023 mg/L de Mg e 39 a 60 mg/L de Fe. Comparando-se os resultados dos minerais com os valores recomendados pela Organização Mundial da Saúde, conclui-se que os metais presentes nos chás das plantas poderiam contribuir na complementação das dietas alimentares das pessoas que as utilizam

    Potential of Biofluid Components to Modify Silver Nanoparticle Toxicity

    Get PDF
    Abstract Establishing realistic exposure scenarios is critical for cytotoxic investigation of silver nanoparticles (AgNP) in the gastrointestinal tract. This study investigated the potential interaction with and effect of biofluid components, namely cholic acid, deoxycholic acid and ursodeoxycholic acid, on AgNP toxicity. Two cell lines corresponding to organs related to the biofluid components were employed. These were HepG-2 a hepatocellular carcinoma derived from liver tissue and Hep2 an epithelial cell line. Physiochemical and cytotoxic screening was performed and the ability of biofluid components to modify AgNP cytotoxicity was explored. No alteration to the physiochemical characteristics of AgNP by biofluid components was demonstrated. However, biofluid component addition resulted in alteration of AgNP toxicity. Greater reactive oxygen species induction was noted in the presence of cholic acid and deoxycholic acid. Ursodeoxycholic acid demonstrated no modification of toxicity in HepG-2 cells; however, significant modification was noted in Hep2 cells. It is concluded that biofluid components can modify AgNP toxicity but this is dependent on the biofluid component itself and the location where it acts
    corecore