32 research outputs found

    Shrubland primary production and soil respiration diverge along European climate gradient

    Get PDF
    imbalance p paper contact with: Marc Estiarte, [email protected] and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change

    Temperature dependence of soil respiration modulated by thresholds in soil water availability across European shrubland ecosystems

    Get PDF
    Soil respiration (SR) is a major component of the global carbon cycle and plays a fundamental role in ecosystem feedback to climate change. Empirical modelling is an essential tool for predicting ecosystem responses to environmental change, and also provides important data for calibrating and corroborating process-based models. In this study, we evaluated the performance of three empirical temperature–SR response functions (exponential, Lloyd–Taylor and Gaussian) at seven shrublands located within three climatic regions (Atlantic, Mediterranean and Continental) across Europe. We investigated the performance of SR models by including the interaction between soil moisture and soil temperature. We found that the best fit for the temperature functions depended on the site-specific climatic conditions. Including soil moisture, we identified thresholds in the three different response functions that improved the model fit in all cases. The direct soil moisture effect on SR, however, was weak at the annual time scale. We conclude that the exponential soil temperature function may only be a good predictor for SR in a narrow temperature range, and that extrapolating predictions for future climate based on this function should be treated with caution as modelled outputs may underestimate SR. The addition of soil moisture thresholds improved the model fit at all sites, but had a far greater ecological significance in the wet Atlantic shrubland where a fundamental change in the soil CO2 efflux would likely have an impact on the whole carbon budget

    Shrubland primary production and soil respiration diverge along European climate gradient

    Get PDF
    Above- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8–12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change

    Methane emissions from soils: synthesis and analysis of a large UK data set

    Get PDF
    Nearly 5000 chamber measurements of CH4 flux were collated from 21 sites across the UK, covering a range of soil and vegetation types, to derive a parsimonious model that explains as much of the variability as possible, with the least input requirements. Mean fluxes ranged from -0.3 to 27.4 nmol CH4 m−2 s−1, with small emissions or low rates of net uptake in mineral soils (site means of -0.3 to 0.7 nmol m−2 s−1) and much larger emissions from organic soils (site means of -0.3 to 27.4 nmol m−2 s−1). Less than half of the observed variability in instantaneous fluxes could be explained by independent variables measured. The reasons for this include measurement error, stochastic processes and, probably most importantly, poor correspondence between the independent variables measured and the actual variables influencing the processes underlying methane production, transport and oxidation. When temporal variation was accounted for, and the fluxes averaged at larger spatial scales, simple models explained up to ~75% of the variance in CH4 fluxes. Soil carbon, peat depth, soil moisture and pH together provided the best sub-set of explanatory variables. However, where plant species composition data were available, this provided the highest explanatory power. Linear and non-linear models generally fitted the data equally well, with the exception that soil moisture required a power transformation. To estimate the impact of changes in peatland water table on CH4 emissions in the UK, an emission factor of +0.4 g CH4 m−2 y−1 per cm increase in water table height was derived from the data

    Increased sensitivity to climate change in disturbed ecosystems

    Get PDF
    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2–5 years) but emerge over a longer term (7–14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change

    Trial

    No full text

    Test

    No full text
    Test of the syste
    corecore