NERC Open Research Archive

Article (refereed) - postprint

Kröel-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel; Beier, Claus; De Angelis, Paolo; de Dato, Giovanbattista; Dukes, Jeffrey S.; Emmett, Bridget; Estiarte, Marc; Garadnai, János; Kongstad, Jane; Kovács-Láng, Edit; Larsen, Klaus Steenberg; Liberati, Dario; Ogaya, Romà; Riis-Nielsen, Torben; Smith, Andrew R.; Sowerby, Alwyn; Tietema, Albert; Penuelas, Josep. 2015. Increased sensitivity to climate change in disturbed ecosystems. Nature Communications, 6, 6682. <u>https://doi.org/10.1038/ncomms7682</u>

© 2015 Macmillan Publishers Limited.

This version available http://nora.nerc.ac.uk/id/eprint/511044/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the author's final manuscript version of the journal article following the peer review process. Some differences between this and the publisher's version may remain. You are advised to consult the publisher's version if you wish to cite from this article.

https://www.nature.com/

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1 Increased sensitivity to climate change in disturbed ecosystems

- 2
- György Kröel-Dulay^{1,*,#}, Johannes Ransijn^{2,#}, Inger Kappel Schmidt², Claus Beier³, Paolo De Angelis⁴, Giovanbattista de Dato⁴, Jeffrey S. Dukes^{5,6}, Bridget Emmett⁷, Marc Estiarte^{8,9}, János Garadnai¹, Jane Kongstad², Edit Kovács-Láng¹, Klaus Steenberg Larsen², Dario 3

4

5

Liberati⁴, Romà Ogaya^{8,9}, Torben Riis-Nielsen², Andrew Smith¹⁰, Alwyn Sowerby⁷, Albert Tietema¹¹, Josep Penuelas^{8,9} 6

- 7
- ¹Institute of Ecology and Botany, MTA Centre for Ecological Research, Alkotmany u. 2-4, 8
- 9 Vacratot, 2163-Hungary
- 10 ²Univ Copenhagen, Dept Geosci & Nat Resources, DK-1958 Frederiksberg, Denmark
- 11 ³Center for Catchments and Urban Water Research NIVA, Gaustadalléen 21, NO-0349 OSLO, 12 Norway
- 13 ⁴ Dept. for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via San 14 Camillo de Lellis, snc - 01100 Viterbo, Italy
- 15 ⁵Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West 16 Lafavette, IN 47907 USA
- 17 ⁶Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 18 47907 USA
- 19 ⁷Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor,
- 20 Gwynedd, UK, LL57 2UW.
- ⁸CSIC, Global Ecology Unit, CREAF-CSIC-Universitat Autònoma de Barcelona, Cerdanyola del 21 22 Vallés 08193, Catalonia, Spain
- 23 ⁹CREAF, Cerdanvola del Vallès 08193, Catalonia, Spain
- 24 ¹⁰School of Environment, Natural Resources, and Geography, Bangor University, Deiniol Road, 25 Bangor, Gwynedd, UK, LL57 2UW
- 26 ¹¹Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240,
- 27 1090 GE Amsterdam. The Netherlands
- 28
- 29 * Corresponding author; e-mail: kroel-dulay.gyorgy@okologia.mta.hu
- 30 # These authors contributed equally to this work.
- 31

- 32 Title
- 33 Increased sensitivity to climate change in disturbed ecosystems
- 34

35 Abstract

36 Human domination of the biosphere includes changes to disturbance regimes, which push 37 many ecosystems towards early-successional states. Ecological theory predicts that early-38 successional ecosystems are more sensitive to perturbations than mature systems, but little 39 evidence supports this relationship for the perturbation of climate change. Here we show that 40 vegetation (abundance, species richness, species composition) across seven European 41 shrublands is quite resistant to moderate experimental warming and drought, and 42 responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed 43 sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) 44 but emerge over a longer term (7-14 years). These results suggest that successional state 45 influences the sensitivity of ecosystems to climate change, and that ecosystems recovering 46 from disturbances may be sensitive to even modest climatic changes. A research bias towards 47 undisturbed ecosystems might thus lead to an underestimation of the impacts of climate 48 change.

49

50 Introduction

In climate change experiments, the vegetation at a study site is typically viewed as a system that is stable or close to equilibrium. A common objective is to assess whether a climatic treatment can push the system away from this hypothesized stable state. Most ecosystems, however, are not in equilibrium. Rather, they change over time, and are often recovering from past disturbances¹. This is particularly true today, as increasing human domination of the biosphere² pushes many ecosystems towards a more dynamic, early successional state. Although Odum³ suggested in 1969 that early-successional ecosystems are more sensitive to

58 perturbation than late-successional ones, this feature of ecosystems is rarely taken into 59 account in climate change research. Single-site climate change experiments have reported that disturbed or recovering systems were sensitive to climate manipulations^{4,5}, but it remains 60 unclear whether an ecosystem's dynamic state determines its sensitivity to climatic changes. 61 Grime et al.⁴ found that a stable, late-successional grassland was more resistant to the same 62 63 climatic manipulations than a dynamic, early-successional grassland. Several authors have 64 suggested that successional state and disturbance history could modulate responses to climatic change^{6,7}, but a lack of data has prevented direct investigations of these relationships. 65

66

67 In addition to experimental field manipulation of climatic conditions, two other major field-68 based approaches can assess the effects of climate change on ecosystems: long-term observations^{8,9} and multi-site and gradient studies across climatically different regions^{10,11}. 69 Each approach has its own merits and limitations^{7,12}, but the combination of these approaches 70 71 can be particularly valuable. For example, contrasting results from experiments conducted in 72 different climatic regions may highlight shifting sensitivities, such as a positive warming 73 effect on aboveground biomass in cold regions and negative effects in water-limited 74 regions^{13,14,15}. Also, long-term experiments have often detected an altered pattern of response over time, including linear increases¹⁶, dampening^{17,18}, and reversals^{19,20}. Despite the added 75 76 value of combined approaches, long-term multi-site experiments are rare.

77

Shrublands constitute an important component of global and European terrestrial
vegetation^{21,22}, provide multiple ecosystem services²³ and are strongly affected by ongoing
environmental changes. The encroachment of shrubs has been observed in many arid and
semiarid regions of the world, mostly attributed to changes in land use²⁴. Expanding
shrublands and other types of woody vegetation have been estimated to be among the largest

83	carbon sinks in the US ²⁵ . As long-lived woody plants, shrubs differ from herbaceous plants in
84	their life history, ecophysiology, biomass allocation, and sensitivity to disturbance, suggesting
85	a potentially different sensitivity to changing climate. A global meta-analysis found that
86	shrubs respond to warming more strongly than other woody and herbaceous plants ¹³ . All these
87	considerations suggest that shrubs and shrublands deserve special attention in climate change
88	impact research.
89	
90	Here we investigated the responses of vegetation (abundance, species richness, species
91	composition) to experimental warming and drought in a standardized field experiment across
92	seven shrubland sites in Europe over 7-14 years (Fig. 1; Table 1; <u>www.increase.ku.dk</u> ; UK:
93	United Kingdom, NL: The Netherlands, DK-M and DK-B: Denmark, HU: Hungary, SP:
94	Spain, IT: Italy). Our results show that the studied shrublands are generally quite resistant to
95	long-term experimental warming and drought, with no across-site responses and few
96	responses within individual sites. However, sites that respond to treatments are all recovering
97	from disturbance; vegetation does not respond to treatments in sites that are in a steady state
98	(as assessed by long-term trend in vegetation abundance in the control plots at each site). This
99	suggests that sensitivity to climate change may be related to the successional state of
100	ecosystems, and that ecosystems recovering from disturbances may be sensitive to even
101	modest climatic changes.
102	
103	Results

104 **Responses to warming and drought treatments.** Neither warming nor drought affected total

105 vegetation abundance or species richness across all sites averaged after 7-14 years of

106 experimental manipulation (long-term responses) (Figs. 2 and 3). We found that, across sites,

107 the change in vegetation composition was marginally affected by both warming (p=0.061;

108	Fig. 4a) and drought ($p=0.072$; Fig. 4b). Within the individual sites, warming decreased
109	species richness at SP but had no significant effect on the other vegetation parameters at any
110	of the sites (Figs. 2a, 3a, 4a). Drought decreased total cover at NL (p=0.02; Fig. 2b) and
111	species richness at SP ($p=0.001$; Fig. 3b). Drought also induced a greater vegetation change at
112	DK-M ($p=0.011$) and SP ($p=0.044$) than in the respective control plots (Fig. 4b).
113	
114	We found even fewer responses when we performed the same set of analyses for years 2-5
115	after onset of the experimental manipulation (short-term responses) (Supplementary Figs. 1-
116	3). Warming increased total vegetation abundance at the cross-site level ($p=0.035$;
117	Supplementary Fig. 1), but this effect disappeared in the long term (Supplementary Fig. 4a).
118	The only individual-site level response to appear over the short term occurred at SP, where
119	drought reduced species richness ($p=0.011$). In the four additional site-level variables that
120	displayed long-term (but not short-term) responses, effect sizes increased over time
121	(Supplementary Fig. 4).
122	
123	The effect of the dynamic state on vegetation sensitivity. To quantify the dynamic state of
124	the sites, we investigated the change in vegetation abundance in the control plots during the
125	study period. Total vegetation abundance significantly increased over time in the control plots
126	at NL (6.3% per year; $p < 0.01$), SP (3.8% per year; $p < 0.01$) and DK-M (2.7% per year;
127	p<0.01), but did not change significantly at the other four sites (Fig. 5). The climatic
128	manipulations thus led to significant responses only at sites (NL, SP, and DK-M) that showed
129	significant successional changes in the control plots. In addition, the dynamic state of the sites
130	(as assessed by the trend in vegetation abundance in the control plots) was related to treatment
131	responses of the vegetation (effect sizes of the treatment effects on Bray-Curtis dissimilarity)
132	for both warming ($p=0.04$) and, marginally, drought ($p=0.07$; Fig. 6). In contrast, these effect

133 sizes of the warming and drought treatments were not related to mean annual temperature

134 (MAT) (*p*=0.57 and 0.97, respectively) or mean annual precipitation (MAP) (*p*=0.36 and 0.43,

135 respectively) at the sites.

136

137 **Discussion**

138 While the cross-site pattern of responses we found suggested an important and rarely explored 139 relationship between recovery from disturbance and sensitivity to climate, we found that 140 vegetation in most sites was resistant to treatments, and site-specific outcomes were 141 consistent with results from other ecosystems. The negative response of total vegetation abundance to drought at NL is similar to findings in other studies^{4,26}, including a meta-142 analysis¹⁰. Note that vegetation abundance was increasing at this site (Fig. 5), thus the 143 144 negative drought effect does not imply a decline but rather a reduced increase. The negative effect of drought on species richness at SP agrees with other studies in semiarid systems²⁶, 145 146 and is most likely related to reduced colonisation due to water stress. The fact that 147 compositional change was the parameter with most of the significant responses (two sites) 148 suggests that plant community composition is among the most sensitive ecosystem properties 149 to climatic change, and can respond even when ecosystem characteristics like total vegetation abundance are unaffected²⁷. This fits the pattern previously suggested in a hierarchical 150 response framework²⁸. 151

152

Most responses detected in the long term (7-14 years) were not present in the short term (2-5 years), and effect sizes increased over time. Although an increasing effect size over time has been found before¹⁶, another study¹⁷ lists examples of effects fading within ten years due to acclimation, species re-ordering, or new limiting factors. It has also been found that short-

term changes in community composition can be reversed within a few years due to species
interactions^{19,20}. This volatility highlights the risk in basing conclusions on short-term studies.

Although we found a few site-level responses, the overall resistance of the studied shrublands to 7-14 years of experimental warming and drought is noteworthy. Resistance to long-term climatic manipulation has been reported for various ecosystems, such as arctic tundra²⁹, tallgrass steppe³⁰, calcareous grassland³¹, and arid shrubland³², indicating a generally widespread ecosystem resistance to climatic change.

165

166 The lack of responses to experimental climate change observed in our shrubland ecosystems 167 may be related to the relatively moderate treatment regimes applied (an average 0.43 K 168 increase in temperature and 22% reduction in annual precipitation). However, our treatments are in line with recently observed decadal changes (0.13 K warming³³) at a multi-decadal (50 169 years) timescale and are similar to treatments in many other climate change experiments^{6,13,19}. 170 171 Although the treatments are not that strong, consistent moderate warming and drought for 8-172 14 years may be an extreme situation, which is supported by the finding that most responses 173 emerged only in the long run. Experiments that impose larger treatment magnitudes have a 174 greater chance to exceed thresholds and thus may provide important insights into ecosystem sensitivity, but are also more likely to have artefacts. For example, both modelling³⁴ and 175 experimental studies³⁵ show that an unrealistic abrupt change in CO₂ concentration 176 177 overestimates ecosystem sensitivity compared to a gradual change to the same level. Mild 178 treatments, on the other hand, may not immediately push the environment beyond observed 179 levels of inter-annual variation, but may allow the detection of effects that accumulate slowly 180 or result from interacting factors. In our case, the relatively mild treatments allowed us to

detect differences in sensitivity that seem to be related to successional states and disturbanceevents.

183

184	All sites that responded to the treatments had vegetation that was increasing in abundance
185	following a disturbance. NL was recovering from a previous cutting-management
186	intervention, SP was recovering from a fire prior to the start of the experiment, and DK-M
187	was affected by a severe outbreak of heather beetles (and consequent mowing) during the first
188	study year (1999). The observed treatment effects at these sites suggest an altered recovery in
189	the drought plots compared to the control plots. In contrast, at the four sites that did not
190	respond to treatments, vegetation abundance did not change over time, suggesting that the
191	vegetation was in a relatively steady state. These results indicate that the dynamic state of
192	ecosystems may be an important predictor of sensitivity to climate change.

193

194 Disturbances are likely to modulate ecosystem responses to climatic change because different 195 life stages of individual plants and successional stages of plant communities differ in their 196 sensitivity to environmental conditions (e.g., drought stress). Regeneration of the previously 197 dominant vegetation after a disturbance can be affected by a climatic change that would 198 hardly affect established mature vegetation because early life stages of plants are often more sensitive to environmental changes than mature plants^{36,37,38}. Changing environmental 199 200 conditions may not directly lead to an ecosystem state shift, but may just reduce the resilience 201 of an ecosystem (ability to recover from a perturbation), thus making it more prone to state shift, but only when disturbed^{39,40}. This implies that the resistance of some ecosystems to 202 203 long-term and severe manipulations of climatic factors, such as a 3 K increase in temperature³¹ or a 30% decrease/increase in precipitation³², does not necessarily hold after the 204 205 occurrence of a major natural or anthropogenic disturbances. The results of our study hint that

- climatic change reduces the resilience of the studied shrubland ecosystems, even though theimposed treatments had few effects in the absence of disturbances.
- 208

209 The results of this study highlight the potential importance of successional state, which has 210 mostly been overlooked in climate change studies. There are several important implications 211 for the planning and interpretation of climate-change impact research. The sensitivity of an 212 ecosystem to climatic change is likely to be critically determined by its ability to recover after 213 a disturbance. This implies, that new experiments should account for site history and quantify 214 successional state or should ideally deliberately include disturbances in the experimental set-215 up. In addition, meta-analyses should include the dynamic state of study systems. Finally, 216 researchers should recognize that many results from climate change experiments to date come from relatively stable near-natural ecosystems^{6,7,13}; disturbed, early-successional systems are 217 218 often avoided. This bias towards relatively stable ecosystems, coupled with the short time 219 frame covered by most studies may lead to a broad underestimation of ecosystem sensitivity 220 to climate change.

222 Methods

223 Study sites. We studied seven sites (Fig. 1) that spanned different climatic regions within 224 Europe (Table 1). MAT at the sites ranged from 7.4 to 16.1 °C, and MAP ranged from 544 to 225 1263 mm (Table 1). The sites contained the major types of shrubland that occur in temperate 226 Europe: Atlantic heathland (UK - United Kingdom, NL - The Netherlands, DK-M, and DK-B 227 - Denmark), continental forest steppe (HU - Hungary), and Mediterranean machia/garrigue 228 (SP - Spain and IT - Italy). The sites were established in 1998 (UK, NL, DK-M, and SP), 229 2001 (HU and IT), or 2004 (DK-B). We used climatic data recorded in the control plots of 230 each experimental site to obtain the climate characteristics of each site. The treatment effect at 231 each site was calculated as the average difference in measured temperature, precipitation, and 232 soil moisture between control and treatment plots.

233

234 **Experimental manipulations.** We used the same experimental technology for the three 235 treatments (warming, drought, and control) at each study site. The warming plots received 236 passive warming at night; the plots were automatically covered with curtains that reflected outgoing radiation after sunset⁴¹. The warming curtains were automatically withdrawn during 237 238 rain events. The night-time warming approach is in accordance with reports that in the 239 ongoing global warming there is a higher rate of warming during the night than during the day^{42} . A study comparing different methods concluded that the passive night-time warming 240 241 approach is one of the most realistic and applicable⁴³. Although the warming effect obtained 242 with this technique is greatest during the night, there is also some carry-over effect into the day⁴⁴. The warming treatment was applied year-round and resulted in an average temperature 243 244 increase of 0.43 K (range: 0.2-0.9 K, Table 2). This is relatively modest but is in line with observed past changes³³ at a multi-decadal (50 years) time scale. 245

246 During rain events, transparent waterproof sheets automatically covered the drought plots, excluding the rain. Note that these sheets covered the drought plots only for the duration of 247 the rain events, thus avoiding warming effects⁴¹. The timing and duration of the experimental 248 249 drought differed among the sites, dependent on seasonality and regional climatic predictions 250 (Table 2). We excluded an average of 22% of precipitation (range: 8-49%, Table 2), and rain 251 exclusion resulted in an average soil moisture decline of 36% (range 23-47%, Table 2) by the 252 end of the drought periods. Control plots had the same metallic scaffolding as the treated plots, but without curtains and sheets. Each treatment had three replicate 20 m^2 plots except at 253 DK-B, which had six replicates and a plot size of 9.1 m^2 . Replicate numbers were limited by 254 255 logistical and financial constraints associated with such complex field experiments. Replicates 256 were grouped in blocks consisting of a control, a warming, and a drought plot. There was no 257 blocking of control and warming plots at the NL site.

258

259 Sampling of vegetation. We used the point-intercept method to measure plant cover and 260 composition. At each site, 300 permanent positions were sampled per plot per sampling year, 261 except for DK-M (200 positions) and DK-B (50 positions per plot in six replicate plots). The 262 points were arranged either along lines (HU, SP, IT, and NL) or in grids per experimental plot 263 (DK-M, DK-B, and UK). Vegetation sampling was conducted at least 50 cm from the plot 264 edge to avoid edge effects. Pin hits for all vascular plant species were recorded. Only the first 265 hit was recorded at IT where the vegetation was open. The vegetation was sampled annually 266 following the start of the experiments, but the sampling years varied subsequently: UK: 1998-267 2000, 2002-2003, and 2007-2012; NL: 1998-2003, 2005, 2008, 2009, and 2012; DK-M:1998-268 2001, 2003, 2006, and 2009-2012; DK-B: 2004 and 2006-2012; HU: 2001-2012; SP: 1999-269 2012; and IT: 2001-2004 and 2010-2012.

We used the number of hits per 100 pins as a proxy for plant or vegetation abundance, as typical in multi-year climate-change experiments²⁶ where the experimental plots are too small for the regular harvesting of biomass.

273

274 Data analysis. The cover of vascular plants for years 7-14 was used to assess the mid- to 275 long-term responses of shrubland plant communities to experimental manipulations. We used linear mixed models from the *lme4* package⁴⁵ in R^{46} to identify treatment effects on total 276 cover, species richness, and compositional change. Compositional change was assessed with 277 the Bray-Curtis dissimilarity⁴⁷ of the plant community in a specific year compared to the plant 278 279 community at the beginning of the experiment at the same plot (pre-treatment year or first 280 year at SP). The Bray-Curtis dissimilarity was calculated for each plot in all sampling years with the *vegdist* function in the vegan package⁴⁸ in R. Values of total cover, species richness, 281 282 and compositional change were averaged across available years (7-14 for long term responses 283 and 2-5 years for short term responses) for each plot to avoid temporal pseudo-replication. 284 We calculated *p*-values for fixed-effect parameters with an analysis of variance using the Satterthwaite estimation of the degrees of freedom with the *lmerTest* package⁴⁹. We applied 285 286 separate models to analyze the effects of the warming and drought treatments and used *site* 287 and site:block as random factors for the cross-site tests; block was a random factor in the site-288 specific analyses (the warming effect in NL was analysed with a linear model, since warming 289 and control plots were not blocked).

290

291 Data were log-transformed (ln) to obtain normality and homoscedasticity in the cross-site

analyses. NL was excluded from all tests related to species richness and Bray-Curtis

293 dissimilarity because it only had one vascular plant species.

294

295 We calculated the effect sizes of the treatments as Hedges's g^{50} :

$$296 g = J \frac{\mu_{\text{treatment}} - \mu_{\text{control}}}{s^*} (1)$$

297 Where $\mu_{\text{treatment}}$ and μ_{control} are the average values in treatment and control plots. s^* is the 298 pooled standard deviation of both control and treatment plots, calculated as follows:

299
$$s^* = \sqrt{\frac{(n_{\text{control}} - 1) \sigma_{\text{control}}^2 + (n_{\text{treatment}} - 1) \sigma_{\text{treatment}}^2}{n_{\text{control}} + n_{\text{treatment}} - 2}}$$
(2)

300 Where n_{control} and $n_{\text{treatment}}$ are the number of replicates and $\sigma^2_{\text{control}}$ and $\sigma^2_{\text{treatment}}$ are the 301 variances of control and treatment plots. Finally, *J* is a factor to correct for bias (related to 302 small sample size) in the estimated effect size:

$$303 \quad J \approx 1 - \frac{3}{4 \left(n_{\text{control}} + n_{\text{treatment}} \right) - 9} \tag{3}$$

304

305 For variables with a significant treatment response in either the short or the long term, we 306 calculated the effect size over time. The successional status of the various sites was 307 determined by linear regression of vegetation abundance (relative to the vegetation abundance 308 at the start of the experiment) in the control plots over time. The slope estimates from these 309 linear regressions (average annual change) were used as a measure of the dynamic status or 310 successional trend for each site, with higher values indicating more dynamic vegetation. We 311 investigated whether the effect size of the variable related to plant community composition 312 (Bray-Curtis dissimilarity) was related to MAT or MAP or the dynamic status of the sites 313 with linear regression. All analyses where done in R^{46} . 314 315

317 **References**

- 318 1. Pickett, A. T. & White P. S. *The Ecology of Natural Disturbances and Patch Dynamics*.
 319 (Elsevier, 1985).
- 320 2. Haberl, H. *et al.* Quantifying and mapping the human appropriation of net primary
 321 production in earth's terrestrial ecosystems. *Proc. Nat. Acad. Sci.USA* 104, 12942–12947
 322 (2007).
- 323 3. Odum, P. The strategy of ecosystem development. *Science* **164**, 262-270 (1969).
- 4. Grime, J. P *et al.* The response of two contrasting limestone grasslands to simulated climate
 change. *Science* 289, 762-765 (2000).
- 5. Prieto, P., Penuelas, J., Lloret, F., Llorens, L, & Estiarte M. Experimental drought and
 warming decrease diversity and slow down post-fire succession in a Mediterranean
 shrubland. *Ecography* 32, 623-636 (2009).
- 6. Rustad, L. E. *et al.* A meta-analysis of the response of soil respiration, net N mineralisation,
 and above-ground plant growth to experimental ecosystem warming. *Oecologia* 126, 543–
 62 (2001).
- 332 7. Beier, C. *et al.* Precipitation manipulation experiments challenges and recommendations
 333 for the future. *Ecol. Lett.* 8, 899-911 (2012).
- 8. Aono, Y. & Kazui, K. Phenological data series of cherry tree flowering in Kyoto, Japan,
 and its application to reconstruction of springtime temperatures since the 9th century. *Int. J. Climatol.* 28, 905-914. (2008).
- 9. Ovaskainen, O. *et al.* Community-level phenological response to climate change. *PNAS: Proc. Nat. Acad. Sci.USA* 110, 13434-13439. (2013).
- 10. Lang, S. I. *et al.* Arctic warming on two continents has consistent negative effects on
 lichen diversity and mixed effects on bryophyte diversity. *Glob. Change Biol.* 18, 10961107. (2012).
- 11. Kovács-Láng, E. *et al.* Changes in the composition of sand grasslands along a climatic
 gradient in Hungary, and implications for climate change. *Phytocoenologia*, **30**, 385–407.
 (2000).
- 345 12. Bloisa, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can
 346 substitute for time in predicting climate-change effects on biodiversity. *Proc. Nat. Acad.*347 *Sci.USA* 110, 9374–9379 (2013).
- 348 13. Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial
 349 plants: a meta-analysis. *New Phytol.* 188, 187-198 (2010).
- 14. Wu, Z., Dijkstra, P., Koch, G. W., Penuelas, J. & Hungate, B. A. Responses of terrestrial
 ecosystems to temperature and precipitation change: a meta-analysis of experimental
 manipulation. *Glob. Change Biol.* 17, 927–942 (2011).
- 15. Penuelas, J. *et al.* Response of plant species richness and primary productivity in
 shrublands along a north-south gradient in Europe to seven years of experimental
 warming and drought: reductions in primary productivity in the heat and drought year of
 2003.*Glob. Change Biol.* 13, 2563-2581 (2007).
- 16. Elmendorf, S. C. *et al.* Global assessment of experimental climate warming on tundra
 vegetation: heterogeneity over space and time. *Ecol. Lett.* 15, 164–175 (2012a).

- 17. Leuzinger, S. *et al.* Do global change experiments overestimate impacts on terrestrial
 ecosystems? *Trends Ecol. Evol.* 26, 236–241 (2011).
- 18. Barbeta, A. Ogaya, R. & Penuelas J. Dampening effects of long-term experimental
 drought on growth and mortality rates of a Holm oak forest. *Glob. Change Biol.* 19, 3133–
 3144. (2013).
- 364 19. Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland
 365 responses to changing climate. *Science* 315, 640-642 (2007).
- 20. Li, G., Liu, Y., Frelich, L. E. & Sun S. Experimental warming induces degradation of a
 Tibetan alpine meadow through trophic interactions. *J Appl. Ecol.* 48, 659–667. (2011)
- 368 21. Specht, R. L. (ed) *Heathlands and Related Shrublands. Ecosystems of the World 9.*Servier, Amsterdam. (1979).
- 22. Di Castri, F., Goodall, D. W. & Specht, R. L. (eds) *Mediterranean-type Shrublands of the world. Ecosystems of the World 11.* Elsevier, Amsterdam, (1981).
- 372 23. McKell, C.M. Shrubs A Neglected Resource of Arid Lands. *Science* 187, 803-809
 373 (1975).
- 374 24. Schlesinger, W. H. *et al.* Biological feedback in global desertification. *Science* 247, 1043375 1048 (1990).
- 25. Pacala, S. W., Hurtt, G. C. & Baker, D. Consistent Land- and Atmosphere-Based U.S.
 Carbon Sink Estimates *Science* 292, 2316-2320 (2001).
- 26. Báez, S., Collins, S. L., Pockman, W. T., Johnson, J. E. & Small, E. E. Effects of
 experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant
 communities. *Oecologia* 172, 1117–1127 (2013).
- 381 27. Hoeppner, S. S. & Dukes, J. S. Interactive responses of old-field plant growth and
 382 composition to warming and precipitation. *Glob. Change Biol.* 18, 1754-1768 (2012).
- 28. Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem
 dynamics in response to chronic resource alterations induced by global change. *Ecology*,
 90, 3279–3289. (2009).
- 29. Hudson, J. M. G. & Henry, G. H. R. High arctic plant community resists 15 years of
 experimental warming. *J. Ecol.* 98, 1035-1041 (2010).
- 30. Collins, S. L. *et al.* Stability of tallgrass prairie during a 19-year increase in growing
 season precipitation. *Funct. Ecol.* 26, 1450-1459 (2012).
- 390 31. Grime, J. P. *et al.* Long-term resistance to simulated climate change in an infertile
 391 grassland. *Proc. Nat. Acad. Sci.USA* 105, 10028 –10032 (2008).
- 392 32. Tielbörger, K. et al. Middle-Eastern plant communities tolerate 9 years of drought in a
 393 multi-site climate manipulation experiment. *Nature Comms.* 5, 5102. DOI:
 394 10.1038/ncomms6102. (2014).
- 33. Christensen, J. H. et al. Regional Climate Projections. Climate Change 2007: The
 Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report
 of the Intergovernmental Panel on Climate Change, Chapter 11. (University Press,
 Cambridge, 2007).
- 399 34. Luo, Y. & Hui, D. Gradual Global Environmental Change in the Real World and Step
 400 Manipulative Experiments in Laboratory and Field: The Necessity of Inverse Analysis. In:

- 401 *Real World Ecology, Large-Scale and Long-Term Case Studies and Methods* (eds Miao,
 402 S., Carstenn, S. & Nungesser, M.), pp. 267-292, (Springer, 2009).
- 403 35. Klironomos, J.N. *et al.* Abrupt rise in atmospheric CO₂ overestimates community
 404 response in a model plant–soil system. *Nature* 433, 621–624 (2005).
- 405 36. Harper, J. L. Population biology of plants. (Academic Press, London, UK, 1977).
- 406 37. Luo, L. & Chen Y. H. Observations from old forests underestimate climate change effects
 407 on tree mortality. *Nature Comms.* 4, 1655. DOI: 10.1038/ncomms2681 (2013).
- 408 38. Anderson-Teixeira, K.J. *et al.* Altered forest dynamics under a changing climate. *Glob.* 409 *Change Biol.* 19, 2001–2021 (2013).
- 39. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. &Walker, B. Catastrophic shifts in
 ecosystems. *Nature* 413, 591-596. (2001).
- 40. Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory
 to observation. *Trends Ecol. Evol.* 18, 648-656. (2003).
- 414 41. Beier, C. *et al.* Novel approaches to study climate change effects on terrestrial ecosystems
 415 in the field drought and passive night time warming. *Ecosystems* 7, 583-597 (2004).
- 416 42. Alward, R. D., Detling, J. K. & Milchunas, D. G. Grassland vegetation changes and
 417 nocturnal global warming. *Science* 283, 229-31. (1999).
- 418 43. Aronson, E. M. & McNulty S. G. 2009. Appropriate experimental ecosystem warming
 419 methods by ecosystem, objective, and practicality. *Agric. Forest Meteorol.* 149, 1791–
 420 1799. (2009).
- 42. Bruhn, D. *et al.* Improving the performance of infrared reflective night curtains for
 42. warming field plots. *Agric. Forest Meteorol.* 173, 53-62. (2009).
- 423 45. Bates, D., Maechler, M. & Bolker, B. *lme4: Linear mixed-effects models using S4 classes* 424 (2011).
- 425 46. R Development Core Team *R: A Language and Environment for Statistical Computing*. R
 426 (Foundation for Statistical Computing, Vienna, Austria 2011).
- 427 47. Bray, J. R. & Curtis, J. T. An ordination of upland forest communities of southern
 428 Wisconsin. *Ecol. Monogr.* 27, 325-349 (1957).
- 429 48. Oksanen, J. et al. vegan: Community Ecology Package (2011).
- 430 49. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. Tests for random and fixed
 431 effects for linear mixed effect models (lmer objects of lme4 package) (2013).
- 432 50. Hedges, L. V. & Olkin, I. (1985) *Statistical methods for meta-analysis*. (Academic Press,
 433 Orlando, FL, 1985).
- 434

435 Acknowledgements

- 436 This study was supported by the INCREASE infrastructural project funded by the EC FP7-
- 437 Infrastructure-2008-1 grant agreement 227628 and by the participating institutions. G.K.-D.
- 438 was supported by the Hungarian Scientific Research Fund (OTKA K112576), and JP and ME
- 439 research was supported by Spanish government grant CGL2013-48074-P, Catalan
- 440 government grant SGR 2014-274, and European Research Council grant ERC-2013-SyG-
- 441 610028 IMBALANCE-P. We thank all the people that have been involved with the
- 442 maintenance of the various experimental sites and with the collection of data.
- 443

444 Author contributions

- 445 C.B. designed the experiment and J.P. designed the vegetation assessment. C.B. and I.K.S.
- 446 coordinated the cross-site research, and C.B., I.K.S., B.E., A.T., J.P., P.A., E.K.-L.and G.K.-
- 447 D. coordinated the research at individual sites. J.R. performed the data analysis. G.K-D
- 448 coordinated the data synthesis and wrote the manuscript with major input from J.R., I.K.S.,
- 449 JSD, and J.P. All authors contributed to data collection, data synthesis, and final manuscript
- 450 writing.

451

452 Additional information

453 Supplementary information is available in the online version of the paper ...

454

455 **Competing financial interest**

456 The authors declare no competing financial interests.

457

460

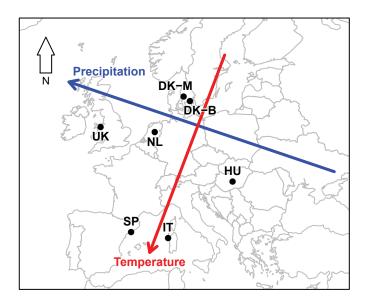
461	Figure 1: Location of the climatic manipulation experiments in Europe. Arrows depict
462	broad-scale gradients in precipitation and temperature. DK-B, Denmark at Brandbjerg; DK-
463	M, Denmark at Mols; HU, Hungary; IT, Italy; NL, Netherlands; SP, Spain; UK, United
464	Kingdom.
465	
466	Figure 2: Change in vegetation abundance in response to treatments. Total vegetation
467	abundance at the seven sites 7-14 years after the start of the experiments in the warming (a)
468	and drought (b) treatments. * indicates a significant difference ($p < 0.05$) between treated and
469	control plots; linear mixed model (mean \pm SE, $n=3$).
470	
471	Figure 3: Change in species richness in response to treatments. Species richness at six
472	sites 7-14 years after the start of the experiments in the warming (a) and drought (b)
473	treatments. * (p <0.05) and ** (p <0.01) indicate significant differences between treated and
474	control plots; linear mixed model (mean \pm SE, <i>n</i> =3). NL was omitted from this analysis due to
475	its single-species vegetation.
476	
477	Figure 4: Change in vegetation composition in control and treated plots. Bray-Curtis
478	dissimilarity between pre-treatment year and 7-14 years after the start of the experiments in
479	the warming (a) and drought (b) treatments. * indicates a significant difference ($p < 0.05$)
480	between treated and control plots; linear mixed model. NL was omitted from this analysis due
481	to its single-species vegetation (mean \pm SE, $n=3$).
482	
483	Figure 5: Change in total cover in the control plots over the experimental period.
484	Average annual change in total cover (TC) in the control plots during the study period,

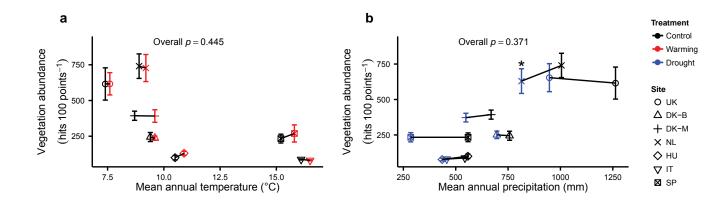
485	estimated by linear regression of TC over time (** $p < 0.01$). Yearly cover change is expressed
486	relative to the cover of the pre-treatment year (% of pre-treatment year cover). Error bars are
487	the standard errors of the estimated trends (n differs per country and ranges from three
488	replicates times seven years (21 data points) to three replicates times 15 years (45 data
489	points); see the Methods).
490	
491	Figure 6: Relationships between effect size of vegetation change in response to
	righte of Relationships between effect size of vegetation change in response to
492	treatments and successional tendency of the sites. Relationships between the effect size
492	treatments and successional tendency of the sites. Relationships between the effect size
492 493	treatments and successional tendency of the sites. Relationships between the effect size (Hedges's g) of warming (a) and drought (b) effects on changes in vegetation composition

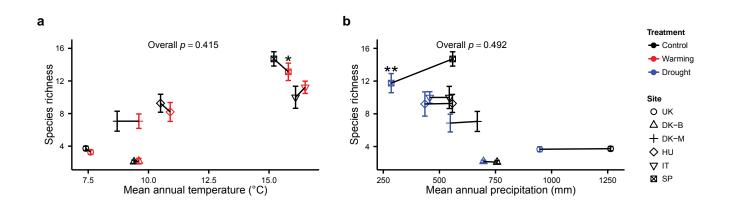
Site code	UK	NL	DK-B	DK-M	HU	SP	IT
Country	United Kingdom	The Netherlands	Denmark	Denmark	Hungary	Spain	Italy
Site name	Clocaenog	Oldebroek	Brandbjerg	Mols	Kiskunság	Garraf	Capo Caccia
Constitution	53°03′N	52°24′N	55°53′N	56°23′N	46°53′N	41°18′N	40°36′N
Coordinates	3°28′W	5°55′E	11°58′E	10°57′E	19°23′E	1°49′E	8°9′E
Soil type (FAO)	peaty Podzol	haplic Arenosol	sandy Podzol	sandy Podzol	calcaric Arenosol	petrocalcic Calcixerepts	Luvisol and Leptosol
MAT (°C)	7.4	8.9	9.4	8.7	10.5	15.2	16.1
MAP (mm)	1263	1005	757	669	558	559	544
Growing season	Apr-Sep	Apr-Oct	Apr-Sep	Apr-Sep	Apr-Sep	Jan-May Oct-Dec	Jan-May Oct Dec
Dominant species	Calluna vulgaris	Calluna vulgaris	Calluna vulgaris Deschampsia flexuosa	Calluna vulgaris Deschampsia flexuosa	Populus alba Festuca vaginata	Erica multiflora Globularia alypum	Cistus monspeliensi Helichrysum italicum Dorycnium pentaphyllun

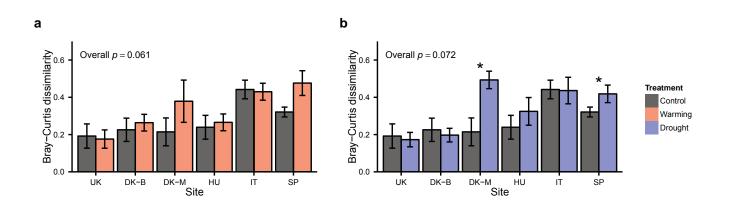
498 **Table 1: Characteristics of the study sites**.

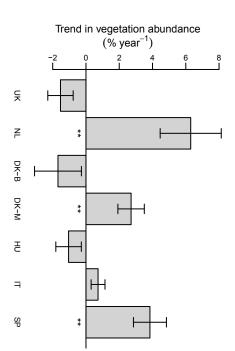
499 Mean annual temperatures (MATs) and mean annual precipitations (MAPs) apply to the study


- 500 period (see Table 2). Species with relative cover above 10% in the control plots during the
- 501 study period are listed as dominant species.
- 502


503 **Table 2**: **Experimental manipulations at the study sites**.


Site code	UK	NL	DK-B	DK-M	HU	SP	IT
Start of the							
experiment	1998	1998	2004	1998	2001	1998	2001
(pre-treatment year)							
First treatment year	1999	1999	2006	1999	2002	1999	2002
Drought							
timing	May-Sep	Apr-Jul	May-Jun	May-Jul	May-Jun	May-Jun, Oct-Nov	Apr-Oct
precipitation							
excluded (% of yearly total)	25	19	8	18	22	49	16
reduction in soil							
moisture (% of control, 0-20 cm)	45	43	47	41	23	28	27
Warming							
timing	year-round	year-round	year-round	year-round	year-round	year-round	year-round
increase in MAT (K)	0.2	0.3	0.2	0.9	0.4	0.6	0.4


504 Drought and warming effects are averages from the first year of the treatments to 2012. Soil


505 moisture reduction applies to the end of the experimental drought period.

