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Abstract 50 

Soil respiration (SR) is a major component of the global carbon cycle and plays a 51 

fundamental role in ecosystem feedback to climate change. Empirical modelling is an 52 

essential tool for predicting ecosystem responses to environmental change, and also provides 53 

important data for calibrating and corroborating process-based models. In this study, we 54 

evaluated the performance of three empirical temperature-SR response functions 55 

(Exponential, Lloyd-Taylor and Gaussian) at seven shrublands located within three climatic 56 

regions (Atlantic, Mediterranean and Continental) across Europe. We investigated the 57 

performance of SR models by including interaction between soil moisture and soil 58 

temperature. We found that the best fit for the temperature functions depended on the site 59 

specific climatic conditions. Including soil moisture we identified thresholds in the three 60 

different response functions that improved the model fit in all cases. The direct soil moisture 61 

effect on SR, however, was weak at the annual time scale. We conclude that the exponential 62 

soil temperature function may only be a good predictor for SR in a narrow temperature range, 63 

and that extrapolating predictions for future climate based on this function should be treated 64 

with caution as modelled outputs may underestimate SR. The addition of soil moisture 65 

thresholds improved the model fit at all sites, but had a far greater ecological significance in 66 

the wet Atlantic shrubland where a fundamental change in the soil CO2 efflux would likely 67 

have an impact on the whole carbon budget. 68 

 69 

Keywords: annual soil respiration, empirical soil respiration models, soil moisture threshold, 70 

shrubland, temperature dependence, temperature sensitivity 71 

 72 
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Introduction 73 

Soil respiration (SR) is a dominant component of the terrestrial carbon cycle and has a 74 

significant influence on global radiative forcing (IPCC 2013). In terrestrial ecosystems 75 

atmospheric CO2 is assimilated during photosynthesis, and then released either via 76 

autotrophic respiration or through heterotrophic decomposition of carbon compounds 77 

differing in recalcitrance and sensitivity to temperature (Davidson & Janssens, 2006). Both 78 

soil moisture availability and temperature may alter with a changing climate, and this will 79 

affect decomposition processes and root activity, potentially changing rates of CO2 efflux 80 

from soils. However, it is poorly understood how altered temperature and soil moisture 81 

availability will affect soil CO2 efflux across multiple ecosystems. In fact, because of the 82 

interaction of multiple environmental processes often occurring simultaneously it is hard to 83 

make predictions beyond empirical data bounds (Vicca et al., 2014). SR response functions 84 

derived from empirical data collected at different temporal and spatial scales could be useful 85 

for improving the predicted impact of future climate on ecosystem processes (Kirschbaum, 86 

2004; Vicca et al., 2014). 87 

 Temperature is often a predominant factor controlling biological metabolic processes 88 

and a broad spectrum of relationships between temperature and SR has been tested (Subke & 89 

Bahn, 2010; Wu et al., 2011; Shen et al., 2013). Most commonly, the exponential function has 90 

been used to model the temperature-respiration relationship (Davidson & Janssens, 2006; 91 

Beier et al., 2009; Vicca et al., 2014). In these cases, however, exponential models were 92 

usually applied in a relatively narrow temperature range not exceeding 30°C. In situ SR 93 

studies covering a wide range of temperature and moisture conditions are rare and the limited 94 

availability of such data affects the ability of modellers to fit SR functions to empirical data 95 

(Vicca et al., 2014). Consequently, to study SR on a wide range of ecosystems and climatic 96 

conditions, the Arrhenius, Lloyd-Taylor, Gaussian, and Quadratic functions have been used 97 
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(Lloyd & Taylor, 1994; Tuomi et al., 2008; Reichstein & Beer, 2008; Lellei-Kovács et al., 98 

2011; González-Ubierna et al., 2014). 99 

 Occasionally, to improve on the fit of a simple exponential model, a wider 100 

environmental range has been incorporated by fitting separate functions to subranges of 101 

temperature (Murthy et al., 2003, Bradford et al., 2008) and soil depth (Pavelka et al., 2007) 102 

or to Mediterranean wet versus dry seasons (de Dato et al., 2010).  Other studies have used 103 

additional parameters to account for factors other than temperature like soil moisture content 104 

(Suseela et al., 2012; Kopittke et al., 2013; Wang et al., 2014), soil physical and chemical 105 

properties (Wang et al., 2003; Balogh et al., 2011; Kotroczó et al., 2014), different substrate 106 

availability (Davidson et al., 2006), or different SOM content and quality (Curiel Yuste et al., 107 

2010). Other studies have also attempted to provide mechanistic explanations for the 108 

temperature dependence of SR (Davidson et al., 2006; von Lützow & Kögel-Knabner, 2009). 109 

In a review, Billings & Ballantyne (2013) examined the mechanisms that are linked to SR, 110 

and reported that temperature induced changes in microbial community structure, microbial 111 

metabolic rates and catalytic rate of exo-enzymes may lead to a decline of SR as a response to 112 

an increase in the soil temperature. 113 

 The relationship between soil moisture and SR has been modelled using many 114 

different functions that include linear (Leirós et al., 1999), exponential (Rodrigo et al., 1997), 115 

second-order exponential, i.e. Gaussian (Howard & Howard, 1993; Mielnick & Dugas, 2000; 116 

Vicca et al., 2014) and reverse exponential (Zhou et al., 2007) relationships. Limitation of SR 117 

by soil moisture has been observed when substrate diffusion is limited by low soil water 118 

availability (Howard & Howard, 1993), but also when the diffusion of O2 is restricted by high 119 

soil water content (Skopp et al., 1990). Mechanistic studies of the relationship between soil 120 

moisture and SR conducted by Davidson et al. (2006) revealed that CO2 efflux is not only 121 

influenced by moisture induced changes in soil physical properties, but also, autotrophic root 122 
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respiration and heterotrophic microbial decomposition are directly impacted by changes in 123 

soil moisture. Evaluation of the impact of soil moisture is more difficult than that of 124 

temperature because the efficiency of water uptake is influenced by various soil physical 125 

properties and also by physiological processes of the organisms. At any given soil moisture 126 

content water uptake may differ for numerous reasons such as soil texture (sand or clay), plant 127 

water use efficiency, stress tolerance and soil microbial composition (e.g. fungal to baterial 128 

ratio) (Moyano et al., 2013). 129 

 The approaches to study the combined impact of temperature and moisture on SR 130 

modelling differ in two fundamental ways: 1. additive versus interactive (Mielnick & Dugas, 131 

2000; Reichstein et al., 2002; Qi et al., 2002; Xu et al., 2004; Zhou et al., 2006); 2. 132 

continuous versus threshold (Davidson et al., 1998; Reichstein et al., 2002; Rey et al., 2002; 133 

Fernandez et al., 2006; Yan et al., 2011). Moisture thresholds that alter SR activities 134 

significantly may be very important in modelling carbon fluxes, not only in arid and semiarid, 135 

but also in mesic ecosystems (Suseela et al., 2012). 136 

In a coordinated network of climate change experiments (EU projects CLIMOOR, 137 

VULCAN and INCREASE) along a natural temperature and precipitation gradient across 138 

European shrublands, whole ecosystem manipulations of warming and summer drought 139 

conditions were conducted. The experiments resulted in a trend of increased SR in response to 140 

the warming treatments and significant reduction in SR in response to the drought treatments 141 

(Emmett et al., 2004; Koppitke et al., 2014). However, some of the ecosystems also had an 142 

individual response to warming and drought that makes general conclusions difficult to draw. 143 

In the longer term, repeated summer drought resulted in an increased SR in the hydric 144 

ericaceous shrubland in Wales. Sowerby et al. (2008) suggested that the year-round reduction 145 

in soil moisture content of the organic-rich podzol soil resulted in a year-round stimulation of 146 

SR. Lellei-Kovács et al. (2008) found that in the semiarid Hungarian shrubland, warming and 147 
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drought reduced the rate of SR. In the Italian Mediterranean shrubland de Dato et al. (2010) 148 

observed a temporary decrease in SR as a short-term response to the warming and drought 149 

treatments. 150 

In a previous study, we investigated the mechanisms that control SR in the semiarid 151 

Hungarian shrubland with extreme temperature and soil moisture regimes, by empirical 152 

modelling SR as a response function of temperature and moisture (Lellei-Kovács et al., 2011). 153 

Applying the same approaches, here we expand this work by modelling SR using two- or 154 

three-years of empirical data collected from seven different shrubland ecosystems across 155 

Europe with markedly different natural temperature and moisture regimes. We compared the 156 

performance of three empirical SR models, the exponential, the Lloyd-Taylor and the 157 

Gaussian functions, and integrated moisture into the models using additive and interactive 158 

approaches. The aims were to (i) investigate the effect of soil temperature and soil moisture 159 

content on SR in the different soils, and (ii) improve model predictions of SR under future 160 

climate change scenarios. We hypothesised, that: (i) the exponential model performs 161 

appropriately only in a relative narrow temperature range, (ii) the Gaussian temperature 162 

dependence function would be the best predictive SR model in ecosystems exposed to a 163 

relatively large temperature range, and (iii) inclusion of soil moisture thresholds would 164 

improve the predictive power of the models at sites where moisture is an obvious controlling 165 

factor (e.g. xeric or hydric ecosystems), whilst in mesic ecosystems the inclusion of moisture 166 

would have a smaller impact. 167 

 168 

169 
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Material and methods 170 

 171 

Characteristics of the studied shrubland ecosystems 172 

The study was conducted along natural temperature and precipitation gradients across Europe 173 

(Beier et al., 2009), in seven different shrubland ecosystems (see Table 1, 2), that included 174 

four Atlantic heathlands at two sites in Denmark (Mols, DK-M, and Brandbjerg, DK-B), one 175 

site in the Netherlands (Oldebroek, NL), and one site in the United Kingdom (Clocaenog, 176 

UK) (Sowerby et al., 2008), two Mediterranean garrigues, one in Spain (Garraf, ES) (Sardans 177 

et al., 2008) and one in Italy (Capo Caccia, IT) (de Dato et al., 2010), and one shrubland in 178 

the Pannonian sandy forest steppe region in Hungary (Kiskunság, HU) (Lellei-Kovács et al., 179 

2011). Meteorological data between 2001 and 2012 (except ES between 2002 and 2003 and 180 

DK-B between 2006 and 2012) were recorded either directly at the sites, or at standard 181 

meteorological stations located nearby (Table 1). Mean annual temperature ranges from 8.0 at 182 

the DK-B site to 16.8 at the IT site. Mean annual precipitation varies between 549 mm in IT 183 

and 1345 mm at the UK site. The variability of climate among sites could be expressed by the 184 

modified Gaussen-index (mean annual precipitation / 2 x mean annual temperature, Peñuelas 185 

et al., 2007) with higher aridity at its lower values (Table 1). 186 

 187 

Field experiments and measurements 188 

Plot-sized climate manipulation experiments were established in the seven shrubland 189 

ecosystems (see above). The experimental plots were subjected to either year-round passive 190 

night-time warming by insulating reflective curtains, extended drought periods by rain-191 

activated transparent polyethylene roofs or an un-treated control since 1999 (ES, UK, NL, 192 

DK-M), since 2001 (HU, IT) or since 2005 (DK-B) (for detailed description of the 193 

experimental design and the effects on soil temperature and moisture, see at Beier et al., 194 
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2004; Lellei-Kovács et al., 2008; Mikkelsen et al., 2008; de Dato et al., 2010). In this study, 195 

we used data from different treatments together with data from control plots, i.e. a response 196 

surface approach, where treatments are seen as a widening of the natural range of 197 

environmental variables (see also Lellei-Kovács et al., 2011, and Table S1 for data of the 198 

treatment effects on soil temperature, soil moisture and SR). 199 

Two or three years of SR measurements were conducted biweekly or monthly in the 200 

experimental plots, with exception of periods with snow cover and when the soil surface was 201 

frozen. Measurements were done between 2010 and 2012, but in ES between 2002 and 2003. 202 

SR data presented are the sum of autotrophic (root respiration) and heterotrophic (microbial 203 

respiration) soil processes. SR rates were measured by infrared gas exchange systems 204 

equipped with SR chambers: LI-6400XT with LI-6400-09 chamber (LICOR Biosciences, 205 

Lincoln, NE USA) in the NL and DK sites; LI-8100 with 8100-102 chamber (LICOR 206 

Biosciences, Lincoln, NE USA) in the UK and IT sites; EGM-3 (PP Systems, Hertfordshire, 207 

UK) in manual mode to analyze air samples from a closed-type, custom-built PVC chamber 208 

in ES; ADC Leaf Chamber Analyzer 4 with PLC & 2250 Soil hood (ADC BioScientific, 209 

Hoddesdon, UK) in HU. Three permanent subplots were used within each plot to capture 210 

within-plot heterogeneity, and plot means were used in the subsequent analyses. (For further 211 

details see: Beier et al., 2009; de Dato et al., 2010; Lellei-Kovács et al., 2011; Kopittke et al., 212 

2013.) Micrometeorological variables were recorded in every plot continuously by automated 213 

instruments (Table 3): soil temperature at 5 cm below the soil surface, and volumetric soil 214 

moisture content at the defined soil depths (Table 2). 215 

Soil properties including soil texture (mechanical and Pipet Method), soil organic 216 

matter content (Tyurin method or dry combustion) and soil pH (by potentiometer with glass 217 

electrode) were measured at each site at the given soil depths (Table 2) before starting the 218 

treatments. Wilting point and field capacity were determined from the soil moisture retention 219 



 10 

curve (pF curve) using soil samples from the sites (Table 5) at the defined soil depths (Table 220 

2). An exception was IT, where soil texture data were used to determine wilting point and 221 

field capacity (Saxton & Rawls, 2006). 222 

 223 

Empirical model of the temperature and moisture sensitivity of SR 224 

For statistical evaluation, we followed the methodology used by Lellei-Kovács et al. (2011) 225 

and treated the datasets of the seven sites independently. Separate analyses for each site were 226 

necessary to account for differences in biota, organic matter content, texture, and moisture 227 

content (Table 2, 3). 228 

 We first fit three different temperature dependence models (see Equations 1-3). Each 229 

of the three response functions represents a possible relationship between increasing soil 230 

temperature and SR. Specifically: (i) the exponential function assumes that the logarithm of 231 

respiration is a linear function of temperature, thus the Q10 temperature coefficient is constant 232 

(Eq. 1); (ii) the Lloyd-Taylor function assumes that the influence of temperature change is 233 

higher at lower than at higher temperatures, thus the logarithm of respiration is a saturating 234 

function of temperature, and Q10 decreases with increasing temperature and its asymptote is 235 

one (i.e. at extremely high temperature there is no further change in respiration) (Eq. 2); and 236 

(iii) the Gaussian function presumes that there is an optimal temperature for SR. Above this 237 

optimum an increase in temperature causes a decline in SR. In this case Q10 is also a 238 

decreasing function of temperature, but it can fall below one (Eq. 3). 239 

  240 

Equations 1-3. The models used to fit soil temperature and SR field data, where SR = soil 241 

respiration; T = soil temperature in Kelvin; a, b, and c are parameters of the models: 242 

 Eq. 1. Exponential:  SR = exp (a + bT) ; 243 

Eq. 2. Lloyd-Taylor:  SR = exp (a + b / (T – c)) ; 244 
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 Eq. 3. Gaussian:  SR = exp (a + bT + cT2) 245 

 246 

After a log transformation of SR data, the exponential and the Gaussian functions (Eq. 1, 3) 247 

could be fit using linear regression. The Lloyd-Taylor function  (Eq. 2) was fit by non-linear 248 

least squares regression also using log-transformed SR as a dependent variable to make the 249 

models statistically comparable, as discussed further below. To initialize the parameters of 250 

non-linear fit, parameter c was set to zero, while starting values of a and b were calculated by 251 

linear regression using 1/T as an independent variable. 252 

In some cases, to preserve the expected shape of the fit curve, we had to apply 253 

constraints on the parameters of Equations 1-3. These constraints for the functions were: 254 

  Exponential:  b ≥ 0 ; 255 

  Gaussian:  c ≤ 0 ; 256 

  Lloyd-Taylor:  b ≤ 0, c ≥ 0 . 257 

The potential effect of soil moisture content on SR was analysed comparing three different 258 

soil moisture inclusion methods in the temperature dependence models: 259 

1. there is no inclusion of soil moisture content, 260 

2. the effects of soil moisture content and soil temperature are additive (i.e. only 261 

parameter a depends on soil moisture content), 262 

3. the effects of soil moisture content and soil temperature are interactive. 263 

Combining the three temperature dependence functions and the three soil moisture effects 264 

resulted in nine models for each site. We treated the soil moisture effect as a categorical 265 

variable as we did not have any a priori knowledge of its functional form. Additive effect 266 

means that soil moisture influences only the parameter a, thus, within one model, temperature 267 

dependence curves of logSR are parallel at different moisture levels, while interaction means 268 

that soil moisture influences parameters b and c too resulting non-parallel temperature 269 
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dependence curves of logSR. 270 

In many cases, arbitrarily chosen cut-off points are used for transforming continuous 271 

variables into categories that introduces subjectivity into the modelling process. To avoid this 272 

problem, our categorizations were created by fitting decision tree models using a conditional 273 

inference framework that resulted in different soil moisture cut-off points depending on the 274 

applied temperature functions. When testing for additive effects, the residuals of the 275 

temperature functions were the dependent functions of the conditional inference trees 276 

(Hothorn et al., 2006) that searches for homogeneous groups of residuals (and thus parameter 277 

a) according to moisture values. We applied model-based recursive partitioning (Zeileis et al., 278 

2005) to search for categories in soil moisture that were homogeneous in the parameters of 279 

temperature dependence. Because model-based partitioning can handle linear models only, we 280 

assumed that the parameter c of the Lloyd-Taylor function was independent of soil moisture, 281 

and equal to the value estimated in the first approach (no soil moisture effect). Based on this 282 

assumption, we fit the Lloyd-Taylor function by linear regression using 1/(T-c) as 283 

independent variable. 284 

To compare the performance of SR models with different number of parameters, we 285 

used corrected Akaike Information Criteria (AICc) that combines fit and complexity of 286 

models; its smaller value indicates a better model (Johnson & Omland, 2004). Because log-287 

transformed SR values were used as dependent variables in all models, AICc values 288 

calculated for different models were comparable (Burnham & Anderson, 2002). For statistical 289 

comparison of the models we calculated the Akaike weights (Johnson & Omland, 2004) of 290 

the models in two ways: (i) models that considered only soil temperature; (ii) all the nine 291 

models of the three temperature functions combined with the three ways of soil moisture 292 

inclusions. Akaike weights were calculated for each site and in each of aforementioned 293 

methods separately (see in Table 4). As the sum of Akaike weights calculated in one inter-294 
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comparison is 1, the model with an Akaike weight above 0.9 was considered unequivocally 295 

the best, and all the others were not interpreted. In case of more models having Akaike 296 

weights above 0.1, all these models were accepted with approximately a similar level of 297 

support in the data (Johnson & Omland, 2004). 298 

All statistical analyses were conducted in R statistical environment (R Development 299 

Core Team, 2008), tree models were fit using the party package (Hothorn et al., 2006). 300 

 301 

Calculations of annual SR rates by the empirical models of SR 302 

Based on the soil temperature and moisture models of SR demonstrated above, we calculated 303 

the annual SR using the daily measured soil temperature and soil moisture meteorological 304 

data for years 2010, 2011 and 2012 in the control plots at all but the ES site. For the ES site 305 

year-round daily soil moisture data were not available for the calculations. We estimated the 306 

median and the 90% confidence interval of the estimated annual SR using the Monte Carlo 307 

simulation: predicted values were calculated with parameters randomly chosen from a 308 

multivariate normal distribution with means and co-variances estimated by fitting 10,000 309 

times. Because of the collinearity of partial derivatives with respect to the parameter b and c 310 

in the Lloyd-Taylor model, these parameters were associated with large values in the 311 

variance-covariance matrix, leading to extremely wide confidence intervals. Because the wide 312 

confidence intervals were an artefact of the non-linear regression, in the case of the Lloyd-313 

Taylor model we decided to use only the predicted values. 314 

315 
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Results 316 

 317 

Variability of environmental factors and SR during the study 318 

Soil texture varied among sites, with high sand content at HU, NL, DK-M and DK-B, high silt 319 

content at ES and UK, and relatively high clay content at the Mediterranean ES and IT sites. 320 

Soil pH was alkaline at HU, ES and IT, while it was acidic at the Atlantic UK, NL, DK-M 321 

and DK-B sites. Soil organic carbon content, the main substrate for SR, was highly variable 322 

among sites (Table 2). 323 

Soil temperature, moisture and SR all differed markedly among the different sites and 324 

over the studied period (Table 3). Soil temperature at 5 cm depth showed the largest range in 325 

HU between 0.4°C in early spring and 40.5°C in summer, while the lowest range was 326 

recorded in the UK between 0.6°C in winter and 14.3°C in summer. Volumetric soil moisture 327 

content was always higher than the wilting point at the UK, DK-B, DK-M, and the NL sites, 328 

but could approach the wilting point at the ES, IT and HU sites (Table 5). The lower soil 329 

moisture content in ES and IT than the wilting point is due to the offset caused by the stone 330 

fraction (>2 mm) of these soils, which is not included in the determination of the wilting point 331 

and field capacity. 332 

SR varied among sites during the measurement periods (Table 3). Overall mean of 333 

observed SR rates ranged from 0.84 μmol CO2 m
-2 s-1 at the HU site to 3.71 μmol CO2 m

-2 s-1 334 

at the DK-M site. 335 

 336 

Temperature control on SR 337 

The best model fit based on Akaike’s Information Criteria (AICc) value, varied among sites 338 

(Table 4a, Fig. 1). Refer to Table S2 for parameter estimates of the models. 339 
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 At four of the seven study sites the exponential soil temperature-respiration model was 340 

not supported by the empirical data (i.e. Akaike weights were lower than 0.1). At the 341 

Mediterranean ES site, and the Continental HU site, with relatively wide soil temperature 342 

ranges (Table 3), we found the Gaussian temperature dependence function to be 343 

unequivocally the best model (Table 4b), while at the Atlantic heathland of the DK-M site the 344 

Lloyd-Taylor and the Gaussian temperature dependence functions also achieved a low AICc 345 

value, i.e. high Akaike weight. At the Atlantic heathland of DK-B the Lloyd-Taylor model 346 

showed the lowest AICc value and was accepted with approximately a level of support in the 347 

data similar to that of the Gaussian model (see Akaike weights in Table 4b). 348 

At the other three sites, including the Capo Caccia (IT) with Mediterranean climate, 349 

and the Atlantic heathlands of Oldebroek (NL) and Clocaenog (UK), the exponential model 350 

showed the lowest AICc value, while the other two models were also supported by the data 351 

(Table 4a,b). However, at the NL and UK sites the Gaussian model had a c parameter of 0, 352 

which corresponds to the exponential model (see Table S2). 353 

 354 

Additive and interactive soil temperature and soil moisture control on SR 355 

Inclusion of soil moisture improved model performance in all cases. Table 5 shows the effects 356 

of soil moisture characteristics identified by conditional inference trees for the three 357 

temperature response functions of SR. We identified separate soil moisture intervals for every 358 

study site. Number of intervals ranges from 1 (DK-B, DK-M, NL) to 5 (HU, ES) (Table S2), 359 

suggesting the existence of thresholds in the soil moisture effect on SR. Thresholds identified 360 

at individual sites were very consistent across the three different models (Table S2). In 361 

additive models, functions fit for different soil moisture intervals differed in parameter a, 362 

which increased with increasing soil moisture, thus at the same temperature higher moisture 363 

resulted in higher SR. 364 
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Assuming interactions between soil moisture content and temperature, we found 365 

several soil moisture intervals that were homogeneous in the parameters of temperature 366 

dependence (Table S2). At most sites we could not find any trend in the parameter values of 367 

temperature dependence functions fit with changes in soil moisture intervals, resulting in 368 

crossing curves in the plotted functions (Fig. 2), suggesting that optimal soil temperature for 369 

SR depended also on moisture. 370 

 We found that in most cases (except the IT and the DK-B sites) only the models with 371 

an interactive soil moisture effect were supported by the empirical data. At the Mediterranean 372 

IT site the exponential temperature model with both additive and interactive moisture models 373 

were supported, as well as the Gaussian and the Lloyd-Taylor temperature functions with an 374 

interactive moisture effect (Table 4). (The Gaussian model with additive soil moisture model 375 

had a c parameter of 0, which corresponds to the exponential model (see Table S2)). The 376 

other exception was the Atlantic DK-B site where models with an additive soil moisture effect 377 

performed better, and the three temperature models were almost equally supported (Table 378 

4a,c). At the Atlantic DK-M site the exponential function had unequivocally the best fit, 379 

whilst at the Atlantic NL and UK sites the exponential and the Lloyd-Taylor temperature 380 

functions, each with interactive moisture effect, were supported by the data (all these models 381 

had an Akaike weight above 0.1). At the Mediterranean ES and the Continental HU sites the 382 

Gaussian temperature model had the highest Akaike weight; at the HU site this model could 383 

be found being unequivocally better than any others, while at the ES site also the Lloyd-384 

Taylor temperature model proved to be supported, all with interactive soil moisture 385 

integration (Table 4a,c). 386 

 387 
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Thresholds in soil moisture influencing soil temperature dependence of SR 388 

The applied method revealed significant soil moisture thresholds in the temperature 389 

dependence functions showing how the temperature sensitivity was altered at different soil 390 

moisture levels. Some thresholds identified by the best model fits were close to the field 391 

capacity or wilting points of the studied ecosystems (Table 5), others may reflect 392 

characteristic temperature and moisture relations of a given season, see below. 393 

 The Continental HU and the Mediterranean ES sites had the most thresholds: these 394 

were at the zone of limited water availability approaching the wilting point, and near field 395 

capacity (Table 5, Fig. 2A,B). At the ES site the curve that represented the highest soil 396 

moisture threshold (at 22.2 Vol%, only found with the Lloyd-Taylor model) showed a 397 

decrease in SR under the highest soil moisture conditions, indicating lower microbial 398 

response to soil moisture during the colder days between November and March, when these 399 

higher soil moisture values occurred (Fig. 2B). At the other Mediterranean site in IT, one 400 

threshold point was also found above the wilting point, and a second threshold (only found 401 

with the additive moisture model) between the wet (winter and spring) and the dry (summer 402 

and early autumn) periods (Table 5, Fig. 2C). Similar to the curve of the Lloyd-Taylor model 403 

at the ES site, at the IT site the curve above this second threshold of the additive exponential 404 

model represents the wet season (highest soil moisture above 17.7 Vol% and lowest soil 405 

temperature below 15°C) (Fig. 2C). At the mesic DK-M, the only threshold for SR was found 406 

above the wilting point, but far below the field capacity value (Table 5, Fig. 2D). The similar 407 

DK-B site also presented this threshold (Table 5, Fig. 2E). At the mesic Atlantic NL site, the 408 

first threshold was found between wilting point and field capacity, while the next threshold 409 

was found near the field capacity, close to the third threshold. At the NL site, the lowest SR 410 

rates were measured at soil moisture contents between 23.7 and 28.2 Vol%, coinciding with 411 

the winter inactive period between October and March, while higher soil moisture occurred 412 
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often in July and August. At soil moisture contents below 23.7 and above 28.2 Vol%, the SR 413 

rates increased with increasing soil moisture (Table 5, Fig. 2F). At the hydric Atlantic UK site 414 

two thresholds for SR were found near field capacity and also far above field capacity. In this 415 

wet ecosystem SR rates decreased with higher soil moisture content (Table 5, Fig. 2G), 416 

because of anaerobic soil conditions. 417 

 418 

Annual SR 419 

To compare the performances of the SR models, we calculated annual SR using the 420 

parameterized models (see model parameters in Table S2) and the daily meteorological data 421 

from the sites. The results for the six sites, HU, IT, DK-M, DK-B, NL and UK (Table 6) 422 

demonstrate that the annual SR estimated by the significant exponential models are in most 423 

cases higher than those estimated by the significant (DK-B) and non-significant (DK-M, NL) 424 

Gaussian models, however, the differences are mostly under 3%. Only at NL were the 425 

differences 7 to 25%. Also, for HU the non-significant exponential model overestimated SR 426 

relative to the significant Gaussian model. Only at the IT and UK sites did the exponential 427 

models not predict higher annual SR than the other models. At the IT site, the models 428 

produced similar estimates. At the UK site, depending on year, the estimates were either not 429 

significantly different or the Gaussian model predicted 20% higher annual SR than the 430 

exponential and Lloyd-Taylor models. Relative to models without moisture effects, models 431 

that included soil moisture resulted in 8, 2, and 14% higher estimates of annual SR for the 432 

mesic sites DK-M, DK-B and NL, respectively. For the semiarid HU and the arid IT sites, 433 

models without moisture effects underestimated annual SR when it was humid in 2010, but 434 

overestimated annual SR in drier years. For the hydric UK site this tendency was reversed, 435 

annual SR was overestimated by the models without moisture effects in the more humid years 436 

but underestimated annual SR in 2010 when precipitation was lowest (see Table 6). Soil 437 
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organic matter content, used as a proxy for soil microbial activity, varied highly among the 438 

study sites (Table 2). Apart from the UK site, a significant relationship between annual SR 439 

and the soil organic matter content was found (Fig. 3 ; r2 = 0.961). However, at the UK site 440 

with considerably higher soil organic matter content, estimated annual SR was near the mean 441 

rate at the other sites (Fig. 3), which is likely the result of anaerobic limitation of 442 

decomposition and the associated accumulation of organic matter at this site (Table 2). 443 

 444 

445 
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Discussion 446 

 447 

Temperature control on SR 448 

To accurately predict SR from ecosystems in future climates it has become necessary to 449 

parameterise models with a wider range of temperatures than currently used. In this study we 450 

examined the temperature response functions of SR at seven European shrubland sites of 451 

different climatic conditions from Atlantic heathlands through Mediterranean macchias to 452 

Continental poplar shrubland, thus extending the temperature and moisture range of our 453 

previous SR investigations (Lellei-Kovács et al., 2011). In most previous field studies, the 454 

temperature-SR function used was fit to a relatively narrow range of soil temperatures, 455 

usually below 30°C. Typically, the exponential temperature function fits respiration data well 456 

in a relatively narrow temperature range below 30°C, whereas the relationship is weaker at 457 

higher temperatures. Thus our approach increases the predictive power when forecasting the 458 

response to a warming future climate, if temperatures are expected to be higher than 30°C 459 

(Mielnick & Dugas, 2000). When SR is studied under a wider range of temperatures, it is 460 

possible that the interaction of additional soil processes, such as substrate and water 461 

availability could alter respiration rates, resulting in lower respiration at higher soil 462 

temperatures (Ågren et al., 1991; Tuomi et al., 2008; Reichstein & Beer, 2008; Lellei-Kovács 463 

et al., 2011; González-Ubierna et al., 2014). 464 

In the present study, at the Atlantic sites, we couldn’t find a model that unequivocally 465 

explained one of the temperature-SR relationships, i.e. the exponential function fit was as 466 

good as the Gaussian and Lloyd-Taylor functions (Table 4b, Fig. 1). This was probably due to 467 

the narrow temperature range, always under the optimum temperature, making it impossible 468 

to detect differences in the shape of the three models. Despite our efforts to obtain data that 469 

spanned a large temperature range by including climate change treatments (Table S1), the 470 
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measurements taken at the Atlantic sites biased the data to a narrower range than anticipated, 471 

with the soil temperature rarely exceeding 20°C. At the Mediterranean IT site, where the 472 

exponential SR models performed the best, soil temperature remained within the bounds of 473 

7°C to 29°C. In this case, the relatively high winter soil temperature range was probably due 474 

to the strong moderating effect from the Mediterranean Sea that causes mild winter 475 

temperatures, in most cases above 10°C. It is therefore likely that at this site we were not able 476 

to detect either the lower or the upper temperature limitation on SR (Table 4b, Fig. 1). 477 

At the ES and HU sites, the Gaussian function was found to be the best performing 478 

temperature-SR function. The Gaussian function assumes that there is an optimal temperature 479 

for SR, which can be detected only when field measurements are performed in a sufficiently 480 

broad range of temperatures (Ågren et al., 1991; Lellei-Kovács et al., 2011; González-481 

Ubierna et al., 2014). The wide range of soil temperatures at the HU and ES sites (~40oC) 482 

may explain why the Gaussian function proved to be the best. 483 

 484 

The influence of soil moisture on the temperature sensitivity of SR 485 

Our modelling approach integrated both soil moisture and temperature to examine the SR 486 

relationship. We revealed clear soil moisture thresholds in the temperature dependence of SR. 487 

This indicated that low soil moisture content was an important limiting factor of SR at both 488 

the seasonally dry Mediterranean and semiarid Continental sites, and also at the mesic 489 

Atlantic sites, whilst high soil moisture content imposing anaerobic conditions proved to limit 490 

SR at the hydric Atlantic site in the UK. In some cases, soil moisture thresholds could be 491 

connected to the wilting point or the field capacity (Table 5), but other thresholds might be 492 

related to more complex physiochemical or biological conditions (Robinson et al., 2016), 493 

such as the effect of soil moisture content on the availability of various soluble substrates or 494 

the effect of specific microbial enzymes with characteristic kinetic properties (Davidson et al., 495 
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2006). Kopittke et al. (2014) reported that integration of soil moisture at the mesic Atlantic 496 

NL site did not improve the model fit of the temperature dependence of SR for control 497 

treatments while it significantly improved the model fit for drought treatments. The lack of a 498 

moisture effect in control plots but appearance of an effect in the drought plots found by 499 

Kopittke et al. (2014) support our analytical approach of using all treatment data together in 500 

order to cover a wider environmental range within the same model. Under Mediterranean 501 

climate at the IT site de Dato et al. (2010) showed a significant difference between 502 

temperature sensitivity of the wet vegetative season and the dry non-vegetative season 503 

between 2002 and 2004. At this site we also found that the best fit of the exponential 504 

temperature function to the dataset between 2010 and 2011 was separated by soil moisture 505 

thresholds (Fig. 2C). These two approaches gave similar results in ecosystems where 506 

vegetation periods are determined by water availability. 507 

Similar to our results, soil moisture content has been shown to enhance the response of 508 

SR to temperature in a continental arid desert (Zhang et al., 2010), in a semiarid steppe of 509 

Inner Mongolia (Chen et al., 2009) and in an old-field climate change experiment (Suseela et 510 

al., 2012). In the latter study, Suseela et al. (2012) observed that both an upper and a lower 511 

soil moisture threshold related to SR activity existed, and that changes in soil structural 512 

properties during drought resulted in a hysteresis effect. Soil moisture thresholds were also 513 

found to change SR responses to temperature in other studies. Rey et al. (2002) and Guidolotti 514 

et al. (2013) found a soil moisture threshold in Mediterranean forests, below which there was 515 

no correlation between SR and soil temperature. In a study of temperate forest ecosystems, 516 

Wang et al. (2006) found that increased temperature sensitivity (Q10) was related to increasing 517 

soil moisture content, but that Q10 declined after reaching a soil moisture threshold. Vicca et 518 

al. (2014) also emphasized the importance of integrating soil moisture in the predictive 519 

models of SR, especially considering an altered moisture regime in the future. However, in 520 
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the modelling approach of Vicca et al. (2014) soil temperature is integrated as a simple 521 

exponential function, which may weaken the extensibility of the models. For comparison, for 522 

the dataset of the ES site the exponential temperature and Gaussian moisture dependence 523 

(model 4 of Vicca et al., 2014) achieved an AIC of 271.63. If both temperature and moisture 524 

dependence were modelled with the Gaussian function and their effect was additive, then an 525 

AIC of 201.75 was achieved. However, for the same dataset, our model with a Gaussian 526 

temperature function and interactive moisture thresholds achieved an AIC of 152.99, 527 

indicating a better performance of the model. 528 

Our results showed that the SR relationship with soil moisture, the latter depending 529 

mostly on precipitation, is non-monotonic, which is congruent with the findings of Vicca et 530 

al. (2014). In addition, at the plot scale this relationship can also be described as non-linear, 531 

with soil moisture thresholds being observed. We expect that the mechanisms that may 532 

explain our results are mediated by changes in the belowground community structure that are 533 

dependent on temperature and moisture (Ågren & Wetterstedt, 2007). 534 

Soil moisture impacts SR directly by changing soil microbial activity and altering soil 535 

structure and porosity, and also indirectly by affecting substrate availability (Davidson et al., 536 

2006). Under semiarid and arid conditions there is a strong edaphic water limitation coupled 537 

with strong pulse dynamics of resources linked to changes in microclimate (Collins et al., 538 

2008; Maestre et al., 2013). The close connection between substrate availability and soil 539 

processes is also demonstrated by the relationship between annual SR and soil organic carbon 540 

content at the studied sites (Fig. 3). Similarly, Fernandez et al. (2006) demonstrated the 541 

impact of soil organic carbon and nitrogen on SR through soil texture and soil moisture 542 

availability in a cold desert ecosystem. They found that when soil moisture and temperature 543 

are both favourable, soil organic carbon and nitrogen cannot be used to predict SR. A 544 

limitation of soil substrate availability for microbes may explain why the Gaussian type soil 545 
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temperature-SR model proved to be the best at the HU and ES sites (Table 5), where not only 546 

the temperature ranges were the largest (Table 3), but the soil organic matter content was also 547 

the lowest (Table 2). 548 

 549 

Annual scale impacts on SR 550 

The upscaled annual rates of SR showed profound differences among both years and models. 551 

As previously demonstrated at the HU site, annual SR rates calculated by the exponential 552 

function were systematically higher than those based on the Lloyd-Taylor and Gaussian 553 

functions (Lellei-Kovács et al., 2011). In this modelling experiment we also demonstrated that 554 

when excluding soil moisture from the models, modelled soil carbon fluxes may be 555 

overestimated especially for warm and dry years, which may be more frequent in the future. 556 

In the present study, annual SR values were also calculated from modelled data at six study 557 

sites (HU, IT, NL, DK-B, DK-M, UK), see Table 6. We found that the rate of annual SR in 558 

NL was very similar to the amount calculated by a different methodology by Koppitke et al. 559 

(2013, 2014) for the same period, which may validate these methods. Annual SR was also 560 

calculated in the work of de Dato et al. (2010) for three study years between 2002 and 2004, 561 

the values calculated were between 927 and 1145 g C m-2 y-1, which are also similar to the 562 

values between 890 and 963 g C m-2 y-1 calculated by the method demonstrated here, for data 563 

between 2010 and 2011. At the UK site, annual SR decreased since 2000 because of a natural 564 

drought period that triggered an irreversible reduction in soil moisture and erosion of organic 565 

matter (Robinson et al., 2016). In the period between 2010 and 2012 annual SR was around 566 

400 g C m-2 y-1 (Domínguez et al., 2015), which is also consistent with our results suggesting 567 

annual SR between 323 and 345 g C m-2 y-1. 568 

At every site, the models that included soil moisture, always improved the model fit 569 

compared to those that excluded soil moisture. Furthermore, at three of the four Atlantic sites, 570 
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including soil moisture resulted in higher estimated annual SR, independently of the applied 571 

temperature dependence function. At the IT and the HU sites the direction of the alteration 572 

was dependent on the year: including soil moisture effect decreased the calculated annual SR 573 

in a drier year, and increased in a more humid year. The results are congruent with our 574 

previously published work, where excluding soil moisture resulted in an overestimation of 575 

rates of annual SR during a dry and hot year, but an underestimation of annual SR in a wet 576 

and cold year (Lellei-Kovács et al., 2011). In the present study, which considered the period 577 

2010 to 2012, variation in soil moisture resulted in a difference of 1 to 25% in the outputs 578 

from the nine different models we considered. This variation in output warrants further 579 

investigation into the uncertainty of model estimations and highlights the importance of 580 

appropriate model choice in the prediction of the future impacts of climate change on SR of 581 

different ecosystems. 582 

 583 

Conclusions 584 

In this study of European shrubland ecosystems under Atlantic, Mediterranean or Continental 585 

climate we demonstrated that the temperature dependence function that best explains SR 586 

depended strongly on the temperature range where the study was conducted. We also showed 587 

that in these ecosystems when soil temperature range was above 30°C, the Gaussian function 588 

with optimum temperature provided a better fit to the data, than the exponential temperature 589 

function. Furthermore, we found that soil moisture strongly affected SR, not only in arid and 590 

semiarid, but also in mesic and hydric ecosystems, and the parameters of the temperature 591 

dependence functions changed significantly at distinctive soil moisture thresholds. These 592 

moisture thresholds may be connected to soil and ecosystem specific variables, such as 593 

wilting point of the plants or field capacity of the soil. In years with high precipitation and in 594 

mesic and hydric ecosystems the models that integrate moisture may estimate a higher level 595 
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of annually respired carbon. These results highlight the importance of the choice from among 596 

the temperature dependence functions and the inclusion of soil moisture data when modelling 597 

SR, especially when predicting SR responses in a wide range of climatic conditions or in a 598 

changing climate. 599 

 600 

 601 

602 
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Figure legends 844 

 845 

Figure 1. Empirical temperature dependence functions of soil respiration (Exponential as 846 

solid line, Lloyd-Taylor as dotted line and Gaussian as dashed line) fit to the data of the 847 

experimental sites with different climatic conditions. See Table S2 for parameter estimates of 848 

the functions. 849 

 850 

Figure 2. Empirical temperature dependence models with moisture integration best fit to the 851 

site data; every box represents one of the nine models in one site, while each curve within a 852 

box is an individual soil moisture category of the models (see also Table 5); A) Kiskunság, 853 

HU; B) Garraf, ES; C) Capo Caccia, IT; D) Mols, DK-M; E) Brandbjerg, DK-B; F) 854 

Oldebroek, NL; G) Clocaenog, UK. Lines are black during the temperature intervals within 855 

which defined intervals of volumetric soil moisture contents occured in the field. Grey line 856 

segments mean extrapolated fittings outside the measured temperature range. 857 

 858 

Figure 3. Relationship between the average annual soil respiration values (g C m-2 year-1) 859 

calculated by the significant models and the soil organic carbon contents of six study sites: 860 

Kiskunság, Hungary (HU); Oldebroek, the Netherlands (NL); Brandbjerg, Denmark (DK-B); 861 

Mols, Denmark (DK-M); Capo Caccia, Italy (IT); Clocaenog, United Kingdom (UK). The 862 

ranges between the lowest and the highest annual soil respiration values calculated by all the 863 

presented models are shown to demonstrate the low interannual variability and the low 864 

variability of the model estimations compared to the high intersite variability. Apart from the 865 

UK site, a significant relationship between annual SR and the soil organic matter content is 866 

demonstrated. 867 

 868 

869 
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Table 1. Characterization of the study sites. 870 

Country Site Location Altitude MAT (Jan.;July) MAP
Gaussen-index 

(MAP / 2MAT)

m °C mm

HU Kiskunság 46°52'N, 19°25'E 108 10.9 (-0.1;22.0) 569 26.1

ES Garraf 41°18'N 01°49'E 210 15.9 (8.6;24.2) 568 17.9

IT Capo Caccia 40°36'N 08°09'E 35 16.4 (9.5;23.6) 549 16.7

DK Mols 56°23'N 10°57'E 58 8.7 (1.1;17.9) 644 37.0

DK Brandbjerg 55°53'N 11°58'E 2 8.0 (1.6;19.4) 613 38.3

NL Oldebroek 52°24'N 05°55'E 25 10.5 (3.8;18.2) 1004 47.8

UK Clocaenog 53°03'N 03°28'W 490 8.2 (3.2;13.7) 1345 82.0
 871 

 872 

873 
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Table 2. Soil characteristics of the study sites. 874 

Country Site Soil type Soil depth Sand Silt Clay pH SOC

cm %

HU Kiskunság Calcaric Arenosol    0 – 20 97.5 1.8 0.7 8.0 0.3

ES Garraf Petric Calcisol    0 – 12 42.9 38.7 18.4 8.1 1.3

IT Capo Caccia Chromic Luvisols    0 – 20 75.4 11.2 13.4 7.7 4.6

DK Mols Haplic Podzol    0 – 20  (3 ) 91.4 2.9 5.7 3.8 4.5

DK Brandbjerg Haplic Podzol    0 – 32  (2 ) 91.7 5.9 2.4 3.9 2.7

NL Oldebroek Haplic Podzol    0 – 16  (4 ) 93.5 6.0 0.5 3.8 1.9

UK Clocaenog Humo-ferric Podzol    0 – 17  (6 ) 40.2 50.0 9.8 3.8 33.8

Soil texture %

 875 

876 
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Table 3. Measurement periods and ranges of soil temperature, moisture, and respiration. 877 

Country Site
Measurement 

periods
Soil temperature Soil moisture Soil respiration

yyyy.mm °C Vol% μmol m
-2 

s
-1

HU Kiskunság 2010.04 - 2012.11 0.40 - 40.50 (21.97) 2.0 - 8.1 (4.1) 0.11 - 2.48 (0.84)

ES Garraf 2002.04 - 2003.12 4.35 - 44.25 (19.04) 5.6 - 31.6 (19.0) 0.27 - 2.60 (1.16)

IT Capo Caccia 2010.02 - 2011.11 7.73 - 28.85 (17.59) 3.2 - 27.6 (14.8) 0.98 - 5.38 (2.65)

DK Mols 2011.05 - 2012.09 2.32 - 22.30 (12.82) 5.8 - 18.3 (12.3) 0.65 - 17.66 (3.71)

DK Brandbjerg 2011.03 - 2012.12 -0.25 - 18.48 (9.93) 5,4 - 30.2 (16.3) 0.02 - 8.48 (1.59)

NL Oldebroek 2010.07 - 2012.06 2.49 - 18.89 (10.46) 7.4 - 39.9 (24.7) 0.26 - 3.05 (0.98)

UK Clocaenog 2010.01 - 2012.12 0.60 - 14.29 (7.91) 8.7 - 71.4 (41.7) 0.13 - 4.00 (1.15)
 878 

 879 

880 
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 881 

Table 4. Results of the model intercomparisons: AICc values and Akaike weights. 882 

a) 883 

Site, Country Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian

Kiskunság, HU 413.34 371.27 326.48 356.75 296.00 263.50 282.98 304.67 246.62

Garraf, ES 364.00 297.03 285.46 191.32 185.53 186.78 169.95 154.55 153.58

Capo Caccia, IT 125.22 127.01 127.14 85.96 106.56 87.96 86.13 87.92 88.26

Mols, DK 142.24 136.66 135.13 142.24 136.66 135.13 131.24 136.66 135.13

Brandjberg, DK 879.75 874.19 874.82 864.36 864.66 866.01 879.75 874.19 874.82

Oldebroek, NL 107.07 109.72 109.13 107.07 109.72 109.13 67.36 69.83 91.94

Clocaenog, UK 610.37 613.28 612.39 595.29 598.32 597.33 565.46 567.32 573.72

Soil moisture is not considered Additive effect between temperature and moisture Interaction between temperature and moisture

 884 

b) 885 

Akaike-weights

Site, Country Exponential Lloyd-Taylor Gaussian

Kiskunság, HU <0.01 <0.01 1.0000

Garraf, ES <0.01 <0.01 0.9969

Capo Caccia, IT 0.5679 0.2231 0.2090

Mols, DK 0.0191 0.3115 0.6694

Brandjberg, DK 0.0346 0.5581 0.4073

Oldebroek, NL 0.6156 0.1641 0.2203

Clocaenog, UK 0.6266 0.1458 0.2276

Soil moisture is not considered

 886 

c) 887 

Akaike-weights

Site, Country Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian

Kiskunság, HU <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.9998

Garraf, ES <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.3809 0.6190

Capo Caccia, IT <0.01 <0.01 <0.01 0.3437 <0.01 0.1182 0.3157 0.1206 0.1018

Mols, DK <0.01 0.0406 0.0873 <0.01 0.0406 0.0873 0.6114 0.0406 0.0873

Brandjberg, DK <0.01 <0.01 <0.01 0.4301 0.3701 0.1885 <0.01 <0.01 <0.01

Oldebroek, NL <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.7747 0.2253 <0.01

Clocaenog, UK <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.7087 0.2799 0.0114

Soil moisture is not considered Additive effect between temperature and moisture Interaction between temperature and moisture

 888 

 889 
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Table 5. The best fit soil temperature-soil respiration models. 891 

Country Site

Wilting 

point 

(Vol%)

Field 

capacity 

(Vol%)

The BEST temp. 

models with 

moist. integration

Threshold moisture values (Vol%) of 

the BEST models (p<0.05).

HU Kiskunság 1.0 8.0 Gaussian 2.5 ; 3.8 ; 4.3 ; 5.6

ES Garraf 8.0 26.0
Lloyd-Taylor,

Gaussian 6.7 ; 9.2
L
 ; 9.3

G
 ; 17.6

L
 ; 22.2

L

IT Capo Caccia 7.8 28.0
Exponential,

Lloyd-Taylor,

Gaussian
10.8 ; 17.7

Additive

DK Mols 4.0 18.0 Exponential 9.6

DK Brandbjerg 2.5 38.0
Exponential,

Lloyd-Taylor,

Gaussian
8.8

E
 ; 9.9

E,G
 ; 16.4

L

NL Oldebroek 4.5 34.5
Exponential,

Lloyd-Taylor
16.8 ; 23.7 ; 28.2

UK Clocaenog 7.0 39.0
Exponential,

Lloyd-Taylor
33.3 ; 38.2 ; 57.9

 892 

 893 

894 
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Table 6. Annual soil respiration values (g C m-2 year-1) from six study sites. 895 

a) 896 

Country Year

Exponential Lloyd-Taylor Gaussian

2010 216.7 (201.9 , 232.3) 188.4 198.9 (189.2 , 209.1)

2011 220.2 (205.9 , 236.2) 192.8 206.3 (196.5 , 216.7)

2012 225.0 (211.2 , 240.5) 198.1 208.7 (199.1 , 219.2)

2010 931.2 (889.2 , 976.7) 928.9 930.5 (887.7 , 975.5)

2011 939.1 (895.9 , 984.6) 935.5 938.1 (894.1 , 983.9)

2011 914.5 (858.0 , 974.4) 944.3 959.3 (896.1 , 1027.1)

2012 866.2 (809.8 , 924.5) 899.3 914.9 (853.2 , 980.1)

2011 499.8 (481.9 , 518.2) 492.2 492.7 (474.7 , 511.4)

2012 456.6 (441.3 , 472.1) 455.0 455.4 (440.3 , 471.4)

2011 350.4 (337.7 , 363.8) 348.8 350.4 (337.7 , 363.8)

2012 340.9 (328.6 , 353.3) 339.5 340.9 (328.6 , 353.3)

2010 338.5 (326.7 , 350.8) 337.4 338.5 (326.7 , 350.8)

2011 362.7 (349.9 , 375.9) 362.4 362.7 (349.9 , 375.9)

2012 346.3 (334.3 , 358.7) 345.7 346.3 (334.3 , 358.7)

HU

IT

DK-M

DK-B

NL

No soil moisture effect

UK

 897 

b) 898 

Country Year

Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian

2010 217.0 (204.4 , 230.5) 212.0 218.2 (206.6 , 230.7) 232.4 (219.1 , 247.2) 194.4 225.3 (210.8 , 241.3)

2011 224.6 (211.8 , 238.2) 199.9 209.0 (200.0 , 218.6) 207.3 (196.4 , 218.6) 180.3 201.9 (192.0 , 212.6)

2012 222.9 (210.4 , 235.9 201.4 208.4 (199.7 , 217.5) 206.2 (195.6 , 217.4) 197.5 199.7 (190.2 , 210.0)

2010 939.0 (897.7 , 982.2) 910.3 939.0 (897.7 , 982.2) 957.8 (917.1 , 1000.6) 957.9 963.3 (926.1 , 1002.4)

2011 889.3 (852.6 , 927.9) 880.5 889.3 (852.6 , 927.9) 903.1 (864.3 , 943.4) 901.2 901.6 (873.8 , 931.3)

2011 914.5 (858.0 , 974.4) 944.3 959.3 (896.1 , 1027.1) 985.2 (919.6 , 1055.2) 944.3 959.3 (896.1 , 1027.1)

2012 866.2 (809.8 , 924.5) 899.3 914.9 (853.2 , 980.1) 923.6 (862.2 , 987.2) 899.3 914.9 (853.2 , 980.1)

2011 511.9 (492.9 , 531.5) 512.3 504.6 (494.3 , 515.6) 499.8 (481.9 , 518.2) 492.2 492.7 (474.7 , 511.4)

2012 461.0 (445.8 , 477.0) 456.0 458.3 (453.7 , 463.3) 456.6 (441.3 , 472.1) 455.0 455.4 (440.3 , 471.4)

2011 350.4 (337.7 , 363.8) 348.8 350.4 (337.7 , 363.8) 393.1 (369.7 , 418.0) 391.4 364.2 (298.0 , 451.2)

2012 340.9 (328.6 , 353.3) 339.5 340.9 (328.6 , 353.3) 393.5 (369.5 , 420.1) 392.8 296.4 (266.2 ,327.0)

2010 335.5 (323.8 , 347.4) 335.9 335.5 (323.8 , 347.4) 342.9 (330.0 , 356.3) 340.9 340.0 (328.8 , 351.0)

2011 354.8 (342.3 , 367.8) 356.2 354.8 (342.3 , 367.8) 345.1 (331.1 , 359.9) 345.2 348.8 (336.5 , 361.7)

2012 329.7 (317.1 , 343.3) 330.8 329.7 (317.1 , 343.3) 323.4 (310.6 , 336.6) 322.8 388.9 (384.0 , 395.5)

DK-B

NL

UK

Additive soil moisture effect Interactive soil moisture effect

HU

IT

DK-M
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Table legends 903 

 904 

Table 1. Characterization of the study sites. 905 

MAT (mean annual temperature) and MAP (mean annual precipitation) between 2001 and 906 

2012, except for ES between 2002 and 2003 and DK-B between 2006 and 2012. Gaussen-907 

index of aridity, as modified by Peñuelas et al. (2007) related to annual climatic data of the 908 

study sites, highlighting the climatic differences between them. 909 

 910 

Table 2. Soil characteristics of the study sites. 911 

Soil depth stands for the sampling depth for soil moisture and other measurements, 912 

representing the most active soil layers. Parenthetical numbers represents the thickness of the 913 

organic soil layers; pH was measured in H2O; SOC stands for the soil organic carbon 914 

content. 915 

 916 

Table 3. Measurement periods and ranges of soil temperature at 5 cm soil depth, soil 917 

moisture measured in the soil depths presented in Table 2., and soil respiration during the 918 

measurements. Overall average values are in bold within brackets. 919 

 920 

Table 4. Results of the model intercomparisons: a) Corrected Akaike Information Criterion 921 

(AICc) values of all temperature dependence models (Eq. 1-3); best AICc values by moisture 922 

considerations are in bold; b) Akaike weights of the models without considering soil 923 

moisture; c) Akaike weights of all models compared. Values of supported models (>0.1) are 924 

in bold and italic. In case of only one supported model, Akaike weight is highlighted in bold. 925 

 926 
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Table 5. The best fit soil temperature-soil respiration models according to the AIC, and the 927 

thresholds in soil moisture of the best models (p<0.05), ranked by the splitting up points of 928 

the decision trees; thresholds in moisture at p<0.01 significance level are highlighted. When 929 

a threshold is not supported by all the significant models, it is marked with the abbreviation 930 

of the concerned models. The field capacity at pF=2.1 (-0.02 MPa) and wilting point at 931 

pF=4.2 (-1.58 MPa) for every site are also included to help the comparison of the thresholds. 932 

 933 

Table 6. Annual soil respiration values (g C m-2 year-1) from six study sites, median and, for 934 

the exponential and the Gaussian models only, the boundaries of the 90% confidence interval 935 

in brackets. Calculations by the 9 models were based on the site meteorological data in the 936 

control plots of each site. (Confidence intervals would be extremely wide for the Lloyd-Taylor 937 

model because of the collinearity between its parameters.) Annual values by the overall best 938 

fit models are highlighted. 939 

 940 

 941 

Supplemental Material 942 

 943 

Table S1. Measurement periods and ranges of soil temperature, soil moisture, and soil 944 

respiration of the seven sites in the control, drought and warming treatments during the 945 

measurements. 946 

 947 

Table S2. Model parameters of the nine temperature dependence models of the seven sites. 948 

 949 


