2,529 research outputs found

    Problematic clinical features of powered wheelchair users with severely disabling multiple sclerosis

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2014 Informa UK Ltd.Purpose: The aim of this study is to describe the clinical features of powered wheelchair users with severely disabling multiple sclerosis (MS) and explore the problematic clinical features influencing prescription. Method: Retrospective review of electronic and case note records of recipients of electric-powered indoor/outdoor powered wheelchairs (EPIOCs) attending a specialist wheelchair service between June 2007 and September 2008. Records were reviewed by a consultant in rehabilitation medicine, data systematically extracted and entered into a computer database. Further data were entered from clinical records. Data were extracted under three themes; demographic, diagnostic, clinical and wheelchair factors. Results: Records of 28 men mean age 57 (range 37–78, SD 12) years and 63 women mean age 57 (range 35–81, SD 11) years with MS were reviewed a mean of 64 (range 0–131) months after receiving their wheelchair. Twenty two comorbidities, 11 features of MS and 8 features of disability were thought to influence wheelchair prescription. Fifteen users were provided with specialised seating and 46 with tilt-in-space seats. Conclusions: Our findings suggest that people with severe MS requiring an EPIOC benefit from a holistic assessment to identify problematic clinical features that influence the prescription of the EPIOC and further medical and therapeutic interventions

    Long-time Low-latency Quantum Memory by Dynamical Decoupling

    Get PDF
    Quantum memory is a central component for quantum information processing devices, and will be required to provide high-fidelity storage of arbitrary states, long storage times and small access latencies. Despite growing interest in applying physical-layer error-suppression strategies to boost fidelities, it has not previously been possible to meet such competing demands with a single approach. Here we use an experimentally validated theoretical framework to identify periodic repetition of a high-order dynamical decoupling sequence as a systematic strategy to meet these challenges. We provide analytic bounds-validated by numerical calculations-on the characteristics of the relevant control sequences and show that a "stroboscopic saturation" of coherence, or coherence plateau, can be engineered, even in the presence of experimental imperfection. This permits high-fidelity storage for times that can be exceptionally long, meaning that our device-independent results should prove instrumental in producing practically useful quantum technologies.Comment: abstract and authors list fixe

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    Recent Change—North Sea

    Get PDF
    This chapter discusses past and ongoing change in the following physical variables within the North Sea: temperature, salinity and stratification; currents and circulation; mean sea level; and extreme sea levels. Also considered are carbon dioxide; pH and nutrients; oxygen; suspended particulate matter and turbidity; coastal erosion, sedimentation and morphology; and sea ice. The distinctive character of the Wadden Sea is addressed, with a particular focus on nutrients and sediments. This chapter covers the past 200 years and focuses on the historical development of evidence (measurements, process understanding and models), the form, duration and accuracy of the evidence available, and what the evidence shows in terms of the state and trends in the respective variables. Much work has focused on detecting long-term change in the North Sea region, either from measurements or with models. Attempts to attribute such changes to, for example, anthropogenic forcing are still missing for the North Sea. Studies are urgently needed to assess consistency between observed changes and current expectations, in order to increase the level of confidence in projections of expected future conditions

    Reversed halo sign in pneumocystis pneumonia: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The reversed halo sign may sometimes be seen in patients with cryptogenic organizing pneumonia, but is rarely associated with other diseases.</p> <p>Case presentation</p> <p>We present a case study of a 32-year-old male patient with acquired immunodeficiency syndrome, who had previously been treated with chemotherapy for non-Hodgkin's lymphoma. A chest X-ray showed bilateral patchy infiltrates. High-resolution computed tomography revealed the reversed halo sign in both upper lobes. The patient was diagnosed with pneumocystis pneumonia, which was successfully treated with sulfamethoxazole trimethoprim; the reversed halo sign disappeared, leaving cystic lesions. Cases such as this one are rare, but show that the reversed halo sign may occur in patients who do not have cryptogenic organizing pneumonia.</p> <p>Conclusion</p> <p>Physicians can avoid making an incorrect diagnosis and prescribing the wrong treatment by carefully evaluating all clinical criteria rather than assuming that the reversed halo sign only occurs with cryptogenic organizing pneumonia.</p

    Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium

    Get PDF
    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss1. However, percentage of total nitrate transformed through complete denitrification accounted for <0–72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide
    corecore