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Designing a practical high-fidelity long-time
quantum memory
Kaveh Khodjasteh1, Jarrah Sastrawan2, David Hayes2, Todd J. Green2, Michael J. Biercuk2 & Lorenza Viola1

Quantum memory is a central component for quantum information processing devices, and

will be required to provide high-fidelity storage of arbitrary states, long storage times and

small access latencies. Despite growing interest in applying physical-layer error-suppression

strategies to boost fidelities, it has not previously been possible to meet such competing

demands with a single approach. Here we use an experimentally validated theoretical

framework to identify periodic repetition of a high-order dynamical decoupling sequence as a

systematic strategy to meet these challenges. We provide analytic bounds—validated by

numerical calculations—on the characteristics of the relevant control sequences and show

that a ‘stroboscopic saturation’ of coherence, or coherence plateau, can be engineered, even

in the presence of experimental imperfection. This permits high-fidelity storage for times that

can be exceptionally long, meaning that our device-independent results should prove

instrumental in producing practically useful quantum technologies.
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D
eveloping techniques for the preservation of arbitrary
quantum states—that is, quantum memory—in realistic,
noisy physical systems is vital if we are to bring quantum-

enabled applications including secure communications and
quantum computation to reality. Although numerous techniques
relying on both open- and closed-loop control have been devised
to address this challenge, dynamical error suppression strategies
based on dynamical decoupling (DD)1–4, dynamically corrected
gates (DCGs)5,6 and composite pulsing7 are emerging as a
method of choice for physical-layer decoherence control in
realistic settings described by non-Markovian open-quantum-
system dynamics. Theoretical and experimental studies in a
variety of platforms8–23 have consistently pointed to dynamical
error suppression as a resource-efficient approach to substantially
reducing physical error rates.

Despite these impressive advances, investigations to date have
largely failed to capture the typical operating conditions of any
true quantum memory; namely, high-fidelity storage of quantum
information for arbitrarily long-storage times, with on-demand
access. This would be required, for instance, in a quantum
repeater, or in a quantum computer where some quantum
information must be maintained with error rates deep below
fault-tolerant thresholds while large blocks of an algorithm are
carried out on other qubits. Instead, both experiment and theory
have primarily focused on two control regimes24: the ‘coherence-
time regime,’ where the goal is to extend the characteristic (‘1/e’
or T2) decay time for coherence as long as possible, and the ‘high-
fidelity regime,’ where the goal is to suppress errors as low as
possible for storage times short compared with T2 (for instance,
during a single gating period). Similarly, practical constraints on
control timing and access latency—of key importance to
laboratory applications—have yet to be considered in a
systematic way.

In this Article, we demonstrate how to realize a practically
useful quantum memory via dynamical error suppression.
Specifically, our studies identify the periodic repetition of a
high-order DD sequence as an effective strategy for memory
applications, considering realistic noise models, incorporating
essential experimental limitations on available controls, and
addressing the key architectural constraint of maintaining short
access latencies to stored quantum information. We consider a
scenario where independent qubits couple to a noisy environ-
ment, and both dephasing and depolarization errors introduced
by realistic DD sequences of bounded-strength p-pulses are fully
accounted for. We analytically and numerically characterize the
achievable long-time coherence for repeated sequences and
identify conditions under which a stroboscopic ‘coherence
plateau’ can be engineered, and fidelity guaranteed to a desired
level at long-storage times—even in the presence of experimen-
tally realistic constraints and imperfections. We expect that our
approach will provide a practical avenue to high-fidelity low-
latency quantum storage in realistic devices.

Results
Model. The salient features of our approach may be appreciated
by first focusing on a single-qubit subject to dephasing. In the
absence of control, we consider a model Hamiltonian of the form
H�sz#(E0þBz)þHE, where the Pauli matrix sz and E0 define
the qubit quantization axis and internal energy, respectively (we
can set E0¼ 0 henceforth), and Bz, HE are operators acting on the
environment Hilbert space. An exact analysis of both the free and
the controlled dynamics is possible if the environment can be
described in terms of either a quantum bosonic bath in thermal
equilibrium (spin-boson model), a weakly-coupled quantum spin
bath (spin-bath model), or a stationary Gaussian stochastic

process (classical-noise model)1,4,25–31. Such dephasing models
provide an accurate physical description whenever relaxation
processes associated with energy exchange occur over a
characteristic time scale (T1) substantially longer than any
typical time scale associated with the dephasing dynamics. As a
result, our analysis is directly relevant to a wide range of
experimentally relevant qubit systems, from trapped ions and
atomic ensembles8,10 to spin qubits in nuclear and electron
magnetic resonance and quantum dots12–14,17,31,32.

We shall proceed by considering the effects of DD within a
filter-design framework, which generalizes the transfer-function
approach widely used across the engineering community33 and
provides a transparent and experimentally relevant picture of the
controlled dynamics in the frequency domain8,9,24,26,34,35. In
order to more easily introduce key concepts and clearly reveal our
underlying strategy, we first consider an idealized ‘bang–bang’
DD setting in which perfect instantaneous p rotations are effected
by using unbounded control amplitudes. As we move forward, we
will relax these unphysical constraints, and demonstrate how
similar results may be obtained with experimentally realistic
controls.

In such an idealized control scenario, a DD sequence may be
specified in terms of the pulse-timing pattern p � ftjgn

j¼ 1, where
we also define t0�0, tnþ 1�Tp as the sequence duration, and we
take all the interpulse intervals (tjþ 1� tj) to be lower-bounded
by a minimum interval t (ref. 28). The control propagator reads

UcðtÞ¼s½ypðtÞþ 1�=2
x , with yp(t) being a piecewise-constant function

that switches between ±1 whenever a pulse is applied. The effect
of DD on qubit dephasing may be evaluated exactly in terms of a
spectral overlap of the control modulation and the noise power
spectral density, S(o) (refs 26,34), which is determined by the
Fourier transform of the two-time noise correlation function30.
Typically, S(o) has a power-law behaviour at low frequencies,
and decays to zero beyond an upper cutoff oc, that is,
S(o)posf(o, oc), and the ‘rolloff function’ f specifies the high-
frequency behaviour, f¼Y(o�oc) corresponding to a ‘hard’
cutoff. Let ~ypðoÞ denote the Fourier transform of yp(t), which is
given by ~ypðoÞ¼o� 1Pn

j¼ 0 ð� 1Þj½expðitjoÞ� expðitjþ 1oÞ�
(refs 4,26). The filter function (FF) of the sequence p is given
by FpðoÞ¼o2 ~ypðoÞ

�� ��2, and the bang–bang-controlled qubit
coherence decays as e� wp, where the decoupling error
wp¼

R1
0

SðoÞ
2po2 FpðoÞdo at time t¼Tp, and the case n¼ 0

recovers free evolution over [0, Tp].
In this framework, the applied DD sequence behaves like a

‘high-pass’ filter, suppressing errors arising from slowly fluctuat-
ing (low-frequency) noise. Appropriate construction of the
sequence then permits the bulk of the noise power spectrum to
be efficiently suppressed, and coherence preserved. For a given
sequence p, this effect is captured quantitatively through the order
of error suppression ap, determined by the scaling of the FF near
o¼ 0, that is, FpðoÞ � Abbj j2o2ðap þ 1Þ / ðotÞ2ðap þ 1Þ, for a
sequence-dependent pre-factor Abb. A high multiplicity of the
zero at o¼ 0 leads to a perturbatively small value of wp as long as
octoo 1. In principle, one may thus achieve low-error
probabilities over a desired storage time Ts simply by using a
high-order DD sequence, such as concatenated DD (CDD; ref. 3),
or Uhrig DD (UDD; ref. 4), with the desired storage time Ts�Tp.

Quantum memory requirements. Once we attempt to move
beyond this idealized scenario in order to meet the needs of a
practically useful, long-time quantum memory, several linked
issues arise. First, perturbative DD sequences are not generally
viable for high-fidelity long-time storage as they require arbi-
trarily fast control (t-0). Real systems face systematic
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constraints mandating t40, and as a result, increasing ap

necessitates extension of Tp, placing an upper bound on high-
fidelity storage times27,28,36. (For instance, a UDDn sequence
achieves ap¼ n with n pulses, applied at tj¼Tpsin2½pj=ð2nþ 2Þ�.)
For fixed Tp, increasing ap implies increasing n, at the expense
of shrinking t as t�t1¼O(Tp/n2). If t40 is fixed, and ap is
increased by lengthening Tp, eventually the perturbative
corrections catch up, preventing further error reduction.
Second, potentially useful numerical DD approaches, such as
randomized DD37,38 or optimized ‘bandwidth-adapted’ DD28,
become impractical as the configuration space of all possible DD
sequences over which to search grows exponentially with Ts.
Third, DD exploits interference pathways between control-
modulated trajectories, meaning that mid-sequence interruption
(toTp) typically result in significantly sub-optimal performance
(Fig. 1). However, a stored quantum state in a practical quantum
memory must be accessible not just at a designated final retrieval
time but at intermediate times also, at which it may serve as an
input to a quantum protocol.

Addressing all such issues requires a systematic approach to
DD sequence construction. Here, we identify a ‘modular’
approach to generate low-error, low-latency DD sequences for
long-time storage out of shorter blocks: periodic repetition of a
base, high-order DD cycle.

Quantum memory via periodic repetition. The effect of repe-
tition for an arbitrary sequence is revealed by considering the
transformation properties of the FF under sequence combination.
Consider two sequences, p1 and p2, joined to form a longer one,
denoted p1þ p2, with propagator yp1þ p2

(t). In the Fourier space
we have ~yp1 þ p2

ðoÞ¼~yp1
ðoÞþ eioTp1 ~yp2

ðoÞ: Let now [p]m denote
the sequence resulting from repeating p, of duration Tp, m times,
with Ts¼mTp. Computing ~y½p�mðoÞ by iteration, the following
exact expression is found:

w½p�m ¼
Z 1

0

SðoÞ
2po2

sin2ðmoTp=2Þ
sin2ðoTp=2Þ FpðoÞdo: ð1Þ

Equation (1) describes dephasing dynamics under arbitrary
multipulse control, generalizing special cases in which this
strategy is implicitly used for simple base sequences (periodic DD,
p¼ {t, t} (ref. 27) and Carr–Purcell, p¼ {t, 2t, t}), and showing

similarities with the intensity pattern due to an m-line diffraction
grating31. The single-cycle FF, Fp(o), is multiplied by a factor that
is rapidly oscillating for large m and develops peaks scaling with
Oðm2Þ at multiples of the ‘resonance frequency,’ ores¼ 2p/Tp,
introduced by the periodic modulation (see Fig. 2 for an
illustration).

After many repeats, the DD error is determined by the
interplay between the order of error suppression of the base
sequence, the noise power behaviour at low frequencies and the
size of noise contributions at the resonance frequencies. The case
of a hard upper frequency cutoff at oc is the simplest to analyse.
Applying the Riemann–Lebesgue lemma removes the oscillating
factor, resulting in the following asymptotic expression:

lim
m!1

w½p�m � w½p�1 ¼
Z oc

0

SðoÞ
4po2

FpðoÞ
sin2ðoTp=2Þ do; ð2Þ

provided that w[p]N is finite. The meaning of this exact result is
remarkable: for small m, the DD error initially increases as
(m2wp), until coherence stroboscopically saturates to a non-zero
residual plateau value (e� w p½ �1 ), and no further decoherence
occurs. Mathematically, the emergence of this coherence plateau
requires that simple conditions be obeyed by the chosen base
sequence relative to the characteristics of the noise:

sþ 2ap 4 1; Tpoc o 2p; ð3Þ

which correspond to removing the singularity of the integrand in
equation (2) at 0 and ores, respectively. Thus, judicious selection
of a base sequence, fixing ap and Tp, can guarantee indefinite
saturation of coherence in principle. Moreover, as w p½ �m � 2w p½ �1
for all m, the emergence of coherence saturation in the infinite-
time limit stroboscopically guarantees high-fidelity throughout
long-storage times. By construction, this approach also guaran-
tees that access latency is capped at the duration of the base
sequence, with tl ¼Tp ooTs; sequence interrupts at intermediate

0 5 10

Time (μs)

Time (μs)

E
rr

or

C
oh

er
en

ce

15
10–11

10–7

10–3

101

105

0 2 15
0

0.5

1

Figure 1 | Access latency in high-order DD sequences. DD error and

coherence (inset) during a UDD5 sequence with minimum interpulse time

t¼ 1ms. Pulse times are marked with filled circles while the open circle

indicates the readout time Tp. Minimal error (maximal coherence) is

reached only at the conclusion of the sequence, with the coherence

spike near 2 ms resulting from a spin–echo effect. For illustration purpose,

in all figures we assume a phenomenological noise model appropriate

for nuclear-spin-induced decoherence in a spin qubit in GaAs,

SðoÞ¼ gðo=ocÞ� 2e�o2=o2
c , with oA[omin, omax]. We set g¼0.207oc,

oc/2p¼ 10 kHz, omin/2p¼0.01 Hz, and omax/2p¼ 108 Hz to maximize

agreement with the measured T2 (E35 ns)13,44. We chose t well above

technological constraints (Bns) in order to reduce n.

F
ilt

er
 fu

nc
tio

n

Angular frequency (a.u.)

104

102

100

p=CDD4
m=1
m=2
m=4
m=8
m=16

Tp

Ts =mTp

p={tj }

105

10–25

10–20

10–2 10–1 100 101 102

10–15

10–10

10–5

100

Angular frequency (Tp
–1)

[p]2 [p]m–1 [p]m

Figure 2 | Schematic representation of base sequence repetition and the

effect on the FF. Top: The base sequence p is indicated in red dashed boxes,

and repeated m times up to a total storage time Ts. Bottom: FF for repetition

of a CDD4 cycle. The FF on a log–log plot grows with frequency with slope

set by ap until it reaches the passband, where noise is passed largely

unimpeded (red thick line). Noise dominated by spectral components in

this region is efficiently suppressed by DD. As m grows, the sinusoidal

terms in Equation (1) lead to the emergence of ‘resonance’ frequencies that

modify the single-cycle FF and produce sharp peaks in the passband.

These must be considered when accounting for the effects of noise at

long-storage time due to ‘resonance’ effects. Inset: FF passband on a

log-linear plot.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3045 ARTICLE

NATURE COMMUNICATIONS | 4:2045 | DOI: 10.1038/ncomms3045 | www.nature.com/naturecommunications 3

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


times that are multiples of Tp are thus permitted in the plateau
regime without degradation of error suppression.

Additional insight into the above phenomenon may be gained
by recalling that for free dephasing dynamics (ap¼ 0), the
possibility of non-zero asymptotic coherence is known to occur
for supra-Ohmic (s41) bosonic environments25,27, consistent
with equation (3). The onset of a plateau regime in the controlled
dynamics may then be given an intuitive interpretation by
generalizing the analysis carried out in Hodgson et al.27 for
periodic DD: if the conditions in equation (3) are obeyed, the
low-frequency (long-time) behaviour becomes effectively supra-
ohmic by action of the applied DD sequence and, after a short-
time transient, the dephasing dynamics ‘oscillate in phase’ with
the periodically repeated blocks. For sufficiently small Tp, the
‘differential’ DD error accumulated over each cycle in this steady
state is very small, leading to the stroboscopic plateau.
Interestingly, that phase noise of a local oscillator can saturate
at long times under suitable spectral conditions has also long been
appreciated in the precision oscillator community33.

In light of the above considerations, the occurrence of a
coherence plateau may be observed even for sub-Ohmic noise
spectra (so1), as typically encountered, for instance, in both spin
qubits (s¼ � 2, as in Fig. 1) and trapped ions (s¼ � 1, see
ref. 39). Numerical calculations of the DD error using such
realistic noise spectra demonstrate both the plateau phenomenon
and the natural emergence of periodically repeated sequences as
an efficient solution for long-time storage, also confirming the
intuitive picture given above. In these calculations, we employ a
direct bandwidth-adapted DD search up to time Ts, by enforcing
additional sequencing constraints. Specifically, we turn to Walsh
DD, wherein pulse patterns are given by the Walsh functions, to
provide solutions that are efficient in the complexity of
sequencing29. Walsh DD comprises familiar DD protocols, such
as spin echo, Carr–Purcell and CDD, along with more general
protocols, including repetitions of shorter sequences.

Starting with a free evolution of duration t, all possible Walsh
DD sequences can be recursively built out of simpler ones within
Walsh DD, doubling in length with each step. Further, as all
interpulse intervals in Walsh DD protocols are constrained to be
integer multiples of t, there are 1

2 ðTs=tÞWalsh DD sequences that
stop at time Ts, a very small subset of all 2Ts=t possible digital
sequences, enabling an otherwise intractable bandwidth-adapted
DD numerical minimization of the spectral overlap integral wp.

Representative results are shown in Fig. 3, where for each Ts all
Walsh DD sequences with given t are evaluated and those with
the lowest error are selected. The choice of t sets the minimum
achievable error and also determines whether a plateau is
achievable, as, for a given Ts, it influences the available values
of Tp and ap. As Ts grows, the best performing sequences (shown)
are found to consist of a few concatenation steps (increasing ap of
the base sequence to obey equation (3)), followed by successive
repetitions of that fixed cycle. Once the plateau is reached,
increasing the number of repetitions does not affect the calculated
error, indicating that stroboscopic sequence interrupts would be
permitted without performance degradation. Beside providing a
direct means of finding high-fidelity long-time DD schemes, these
numerical results support our key analytic insights as to use of
periodic sequence design.

Realistic effects. For clarity, we have thus far relied on a variety of
simplifications, including an assumption of pure phase deco-
herence and perfect p rotations. However, as we next show, our
results hold in much less idealized scenarios of interest to
experimentalists. We begin by considering realistic control lim-
itations. Of greatest importance is the inclusion of errors due to

finite pulse duration, as they will grow with Ts if not appropriately
compensated. Even starting from the dephasing-dominated sce-
nario we consider, applying real DD pulses with duration tp40
introduces both dephasing and depolarization errors, the latter
along, say, the y axis if control along x is used for pulsing. As a
result, the conditions given in equation (3) can no longer guar-
antee a coherence plateau in general: simply incorporating ‘pri-
mitive’ uncorrected p-pulses into a high-order DD sequence may
contribute a net depolarizing error substantial enough to make a
plateau regime inaccessible. This intuition may be formalized, and
new conditions for the emergence of a coherence plateau deter-
mined, by exploiting a generalized multi-axis FF formalism35,40,
in which both environmental and finite-width errors may be
accounted for, to the leading order, by adding in quadrature the z
and y components of the ‘control vector’ that are generated in the
non-ideal setting (see Methods).

The end result of this procedure may be summarized
in a transparent way: to the leading order, the total FF
can be written as FðoÞ � FpðoÞþ FpulðoÞ� Abbj j2o2ðap þ 1Þ þ
Apul

�� ��2o2ðapul þ 1Þ, where Fp(o) is the FF for the bang–bang DD
sequence previously defined and Fpul(o) depends on the details of
the pulse implementation. Corrections in the pre-factors Abb, Apul

arise from higher-order contributions. The parameter apul

captures the error suppression properties of the pulses them-
selves, similar to the sequence order of error suppression ap. A
primitive pulse results in apul¼ 1 due to the dominant
uncorrected y-depolarization. An expression for the asymptotic
DD error may then be obtained starting from equation (1) and
separating w½p�1 � wbb

½p�1 þ wpul
½p�1 . An additional constraint thus

arises by requiring that both the original contribution wbb
½p�1 of
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equation (2) and wpul
½p�1 be finite. Thus, in order to maintain a

coherence plateau in the long-time limit we now require

sþ 2ap 4 1; sþ 2apul 4 1; Tpoc o 2p: ð4Þ

We demonstrate the effects of pulse-width errors in Fig. 4c. When
using primitive px-pulses (apul¼ 1), the depolarizing contribution
due to Fpul(o) dominates the total value of w p½ �m . For the
dephasing spectrum we consider, s¼ � 2, the condition for
maintenance of a plateau using primitive pulses is not met, and
the total error grows unboundedly with m after a maximum
plateau duration Tmax�mmaxTp (mmax may be estimated by
requiring that wpul

½p�m 4 wbb
½p�m , along lines similar to those discussed

in the Methods section). The unwanted depolarizing contribution
can, however, by suppressed by appropriate choice of a higher-
order ‘corrected’ pulse, such as a DCG5,6, already shown to
provide efficient error suppression in the presence of non-
Markovian time-dependent noise35. For a first-order DCG, the
dominant error contribution is cancelled, resulting in apul¼ 2, as
illustrated in Fig. 4a,b; incorporating DCGs into the base DD
sequence thus allows the coherence plateau to be restored. For
small values of tp, the error contribution wpul

½p�m remains small and
the plateau error is very close to that obtained in the bang–bang
limit. Increasing tp leads this error contribution to grow, and the
plateau saturates at a new higher value.

‘Hardware-adapted’ DCGs additionally provide a means to
ensure robustness against control imperfections (including
rotation-angle and/or off-resonance errors) while incorporating
realistic control constraints. For instance, sequences developed
for singlet-triplet spin qubits41 can simultaneously achieve
insensitivity against nuclear-spin decoherence and charge noise
in the exchange control fields, with inclusion of finite timing
resolution and pulse rise times. A quantitative performance
analysis may be carried out in principle through appropriate
generalization of the FF formalism introduced above. Thus, the
replacement of low-order primitive pulses with higher-order
corrected pulses provides a straightforward path toward meeting
the conditions for a coherence plateau with realistic DD
sequences. These insights are also supported by recent DD
nuclear magnetic resonance experiments31,32, that have
demonstrated the ability to largely eliminate the effects of pulse
imperfections in long pulse trains.

Another experimentally realistic and important control
imperfection is limited timing precision. The result of this form
of error is either premature or delayed memory access at time
T 0s¼mTp±dt, offset relative to the intended one. Qualitatively,
the performance degradation resulting from such access-timing
errors may be expected to be similar to the one suffered by a high-
order DD sequence under pulse-timing errors, analysed
previously24. A rough sensitivity estimate may be obtained by
adding an uncompensated ‘free-evolution’ period of duration dt
following the mth repeat of the sequence, with the resulting FF
being determined accordingly. In this case, the effective order of
suppression transitions ap-0, appropriate for free evolution, at a
crossover frequency determined by the magnitude of the timing
jitter. In order to guarantee the desired (plateau) fidelity level, it is
necessary that the total FF—including timing errors—still meets
the requirements set in equation (4). In general, this is achievable
for supra-Ohmic spectra with s41. When these conditions are
not met, the resulting error can be much larger than the plateau
value if the jitter is appreciable. Therefore, access timing places a
constraint on a system designer to ensure that quantum
memories are clocked with low-jitter, high-resolution systems.
Considering the situation analysed in Fig. 3 with t¼ 1 ms and
w p½ �1B1.3� 10� 9, we estimate that access jitter of order 1.5 ps
may be tolerated before the total measured error exceeds the
bound of 2w p½ �1 . As current digital delay generators allow for sub-
ps timing resolution and ps jitter, the requisite timing accuracy is
nevertheless within reach with existing technologies.

We next address different aspects of the assumed noise model.
Consider first the assumption of a hard spectral cutoff in
bounding the long-storage time error. If such an assumption is
not obeyed (hence residual noise persists beyond oc), it is
impossible to fully avoid the singular behaviour introduced by the
periodic modulation as m-N. Contributions from the resonat-
ing region oEores are amplified with m, and, similar to pulse-
errors, cause w p½ �m to increase unboundedly with time and
coherence to ultimately decay to zero. Nonetheless, a very large
number of repetitions, mmax, may still be applied before such
contributions become important (note that this is the case in the
previous figures, where we assume a soft Gaussian cutoff). We
lower-bound mmax by considering a scenario in which a plateau is
preserved with a hard cutoff and estimating when contributions
to error for frequencies o4oc become comparable to the plateau
error. For simplicity, we assume that noise for o4oc falls in the
passband of the FF and that at o¼oc, the noise power-law
changes from os-o� r, with r40. Treating such a case with
s¼ � 2 and using again repeated CDD4 with t¼ 1 ms as in Fig. 3,
we find that as long as r is sufficiently large, the plateau error
w p½ �1B10� 9 can persist for mmax\104–106 repetitions (that is,
up to a storage time of over 10 s), before the accumulated error
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Figure 4 | Realistic FFs and effect of finite-width errors and soft cutoff.

(a) z (dephasing) and (b) y (depolarization) quadrature components of the

total FF for CDD4, F(o)¼ Fp(o)þ Fpul(o)�|ry(o)|2þ |rz(o)|2, incorporating

non-zero duration uncorrected px-pulses (red), and first-order DCGs5,40,

tp¼ 1 ns (see also Methods). In the ideal case, the depolarizing contribution

|ry(o)|2�0, and F(o)�Fp(o). The improvement of apul for CDD4 with DCGs

is demonstrated by the increased slope of |ry(o)|2 in panel (b). (c) DD error

for the t¼ 1ms data set of Fig. 3, using finite-duration pulses. Sub-Ohmic

noise spectrum with s¼ � 2 and soft Gaussian cutoff as in Fig. 1 are

assumed. The low-value of apul for primitive pulses leads to unbounded

error growth, terminating the plateau after a small number of repeats,

determined by the ratio of tp/t. Sequences incorporating DCGs meet the

conditions for plateau out to at least 1 s storage time, with error increased

by a factor of order unity compared with the bang–bang coherence plateau

value, using tp up to 100 ns. Outlier data points for CDD3 arise because of

even–odd effects in the FF when including pulse effects.
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due to high-frequency contributions exceeds the plateau coher-
ence (see Methods). This makes it possible to engineer a
coherence plateau over an intermediate range of Ts, which can
still be exceptionally long from a practical standpoint, depending
on the specific rolloff behaviour of S(o) at frequencies beyond oc.

Lastly, we turn to consideration of more general open-system
models. For instance, consider a system–bath interaction, which
includes both a dominant dephasing component and an ‘off-axis’
perturbation, resulting in energy relaxation with a characteristic
time scale T1. Then the initial dephasing dynamics, including the
onset of a coherence plateau, will not be appreciably modified so
long as these two noise sources are uncorrelated and there is a
sufficient separation of time scales. If T144T2, and the maximum
error per cycle is kept sufficiently small, the plateau will persist
until uncorrected T1 errors dominate w p½ �m . We reiterate that in
many experimentally relevant settings—notably, both trapped-
ion and spin qubits—T1 effects may indeed be neglected up to
very long-storage times. Ultimately, stochastic error sources due,
for instance, to spontaneous emission processes and/or Marko-
vian noise (including white control noise) may form a limiting
mechanism. In such circumstances, the unfavourable exponential
scaling of Markovian errors with storage time poses a problem for
high-fidelity storage through DD alone. Given a simple
exponential decay with time-constant TM and assuming that
equation (4) is met, we may estimate a maximum allowed plateau
duration as Tmax � TMw½p�1 . Thus, even with TM¼ 100 s, a
plateau at w½p�1 ¼ 10� 5 would terminate after Tmax¼ 1 ms. Our
results thus confirm that guaranteeing high-fidelity quantum
memory through DD alone requires Markovian noise sources to
be minimized, or else motivates the combination of our approach
with quantum error correction protocols.

Discussion
The potential performance provided by our approach is quite
remarkable. Besides the illustrative error calculations we have
already presented, we find that many other interesting scenarios
arise where extremely low-error rates can be achieved in realistic
noise environments for leading quantum technologies. For
instance, ytterbium ion qubits, of direct relevance to applications
in quantum repeaters, could allow long-time, low-error coherence
plateaus at the time scale of hours, based on bare free-induction-
decay (1/e) times of order seconds39. Calculations using a
common 1/o noise power spectrum with CDD2, a Gaussian
high-frequency cutoff near 100 Hz, t¼ 1 ms and DCG operations
with tp¼ 10ms, give an estimate of the plateau error rate of
2.5� 10� 9. This kind of error rate—and the corresponding
access latency of just 4 ms—has the potential to truly enable
viable quantum memories for repeater applications. Similarly, the
calculations shown throughout the manuscript rely on the well-
characterized noise power spectrum associated with nuclear-spin
fluctuations in spin qubits. Appropriate sequence construction
and timing selection41 permits the analytical criteria set out in
equation (3) to be met, and similar error rates to be achieved,
subject to the limits of Markovian noise processes as described
above.

In summary, we have addressed a fundamental and timely
problem in quantum information processing—determining a
means to effectively produce a practically useful high-fidelity
quantum memory, by using dynamical error suppression
techniques. We have identified the key requirements towards
this end, and developed a strategy for sequence construction
based on repetition of high-order DD base sequences. Our results
allow analytical bounding of the long-time error rates and
identify conditions in which a maximum error rate can be
stroboscopically guaranteed for long times with small access

latencies, even in the presence of limited control. We have
validated these insights and analytic calculations using an efficient
search over Walsh DD sequences assuming realistic noise spectra.
The results of our numerical search bear similarity to an
analytically defined strategy established in Hodgson et al.27 for
optimizing long-time storage in a supra-Ohmic excitonic qubit.

From a practical perspective, our analyses help set technolo-
gical targets on parameters such as error-per-pulse, timing
resolution and Markovian noise strengths required to achieve
the full benefits of our approach to quantum memory. This work
also clearly shows how a system designer may calculate the
impact of such imperfections for a specific platform, bound
performance and examine technological trade-offs in attempting
to reach a target memory fidelity and storage time. As the role of
optimization in any particular setting is limited to finding a low-
error sequence of duration Tp to be repeated up to Ts, our
framework dramatically reduces the complexity of finding high-
performance DD protocols.

Future work will characterize the extent to which similar
strategies may be employed to tackle more generic quantum
memory scenarios. For instance, recent theoretical methods
permit consideration of noise correlations across different spatial
directions40 in general non-Markovian single-qubit environments
for which T2 and T1 may be comparable. In such cases, multi-axis
DD sequences such as XY4 (ref. 2) may be considered from the
outset in order to suppress phase and energy relaxation, as
experimentally demonstrated recently42. Likewise, we remark that
our approach naturally applies to multiple qubits subject to
dephasing from independent environments. As expressions
similar to the spectral overlap integral still determine the decay
rates of different coherence elements43, exact DD can be achieved
by simply replacing individual with collective p pulses, and
conditions similar to equation (2) may then be separately
envisioned to ensure that each coherence element saturates,
again resulting in a guaranteed high-storage fidelity. Addressing
the role of correlated dephasing noise and/or other realistic effects
in multi-qubit long-time storage represents another important
extension of this work.

Methods
Inclusion of pulse errors. Consider a base sequence p of total duration Tp,
including both free-evolution periods and control pulses with non-zero duration
tp, where the center of the jth pulse occurs at time tj�djTp, with djA[0, 1]. FFs that
incorporate, to leading order in Tp, errors due to both dephasing dynamics and
non-ideal pulses are derived following40. The total FF, F(o)¼ Fp(o)þ Fpul(o), may
be expressed as

FðoÞ � j ryðoÞ j 2 þ j rzðoÞj 2; ð5Þ

where rz(y) are, respectively, the total z(y) components of the control vector for pure
dephasing in the relevant quadrature, determined by the toggling-frame
Hamiltonian associated with the control sequence. In the ideal bang–bang limit,
ryðoÞ � 0 and rzðoÞ¼Abboap þ 1, where for example, ap¼ 4, Abb ¼ � iT5

p=214 for
CDD4. In general, the total contributions to the FF are

rzðoÞ¼ 1� eioTp þ 2 cosðotp=2Þ� e� iotp=2rpul
z ðoÞ

h i
up;

ryðoÞ¼ � e� iotp=2rpul
y ðoÞup; ð6Þ

where up �
Pn

‘¼ 1ð� 1Þ‘eiod‘Tp and we incorporate pulse contributions
through rpul

zðyÞ.
For primitive pulses with a rectangular profile, and O�p/tp, direct calculation

yields35:

rpul
z ðoÞ¼

o2

ðo2 �O2Þ eiotp þ 1
� �

;

rpul
y ðoÞ¼

ioO
ðo2 �O2Þ eiotp þ 1

� �
: ð7Þ
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For the three-segment first-order DCG we employ, one finds instead35,40:

rpul
z ðoÞ¼o2 c1ðoÞ

ðo2 �O2Þ �
c2ðoÞ

ðo2 �ðO=2Þ2Þ

� �
;

rpul
y ðoÞ¼ ioO

c1ðoÞ
ðo2 �O2Þ �

c2ðoÞ
2ðo2 � O=2ð Þ2Þ

� �
; ð8Þ

where c1ðoÞ � e4iotp þ e3iotp þ eiotp þ 1 and c2ðoÞ � e3iotp þ eiotp . Starting
from these expressions and suitably Taylor-expanding around o¼ 0, one may then
show that the dominant pulse contributions arise from ry(o) in the uncorrected
case, with apul¼ 1 and Apul¼ �Tptp/p, whereas they arise from rz(o) in the DCG
case, with apul¼ 2 and Apul ¼ � 2iTpt2

p=ð1þ 1=p2Þ:
Assuming a noise power spectrum with a hard cutoff, S(o)¼ g(o/oc)s�

Y(o�oc), the following expression for the (leading order) total asymptotic DD
error, w½p�1 � wbb

½p�1 þ wpul
½p�1 , is obtained:

w½p�1 ¼
g jAbb j 2 o2ap � 1

c

pT2
p ðsþ 2ap � 1Þ þ

g jApul j 2 o2apul � 1
c

pT2
p ðsþ 2apul � 1Þ ; ð9Þ

leading to the plateau conditions quoted in equation (4).

Effect of a soft spectral cutoff. Consider, again, a high-order DD sequence which
is implemented with realistic pulses and is repeated m times. Then the leading
contribution to the DD is given by

w½p�m ¼
Z 1

0

SðoÞ
2po2

sin2ðmoTp=2Þ
sin2ðoTp=2Þ FðoÞdo; ð10Þ

where the FF F(o) is computed as described above and S(o)¼ g(o/oc)s f(o, oc).
While this integral converges nicely if we assume a sharp high-frequency cutoff,
this is rarely encountered in reality. For a soft spectral cutoff, we can break the
error integral up into two (low frequency versus high frequency) contributions, say,

w½p�m � wlow
½p�m þ whigh

½p�m . We wish to estimate how many repeats of the base sequence

are permitted under conditions otherwise leading to a plateau, before corrections
due to the high-frequency tail dominate the error behaviour and destroy the
plateau. Assume that the conditions given in equation (4) are obeyed, and let the
maximum number of allowed repetitions be denoted by mmax. Then mmax may

be determined by requiring that wlow
½p�mmax ¼ whigh

½p�mmax .

As, for every m, we have wlow
½p�m�
� 2wlow

½p�1 , a lower bound for mmax may be

obtained by estimating m* such that whigh

½p�m�
¼ 2wlow

½p�1 . We may therefore simply

identify wlow
½p�1 with the hard-cutoff asymptotic value given in equation (9). In order

to obtain an explicit expression for the high-frequency contribution, we assume
that the noise power above oc also takes a power-law form, S(o)¼ g(o/oc)r,
formally corresponding to a rolloff f¼ (o/oc)r� s, with power r40. (Note that
other possible choices of f, such as exponential or Gaussian rolloffs, may be treated
along similar lines, at the expense of more complicated integrals). Thus, we may
write

whigh

½p�m�
�
Z 1

oc

gðo=ocÞ� r

2po2

sin2ðmoTp=2Þ
sin2ðoTp=2Þ Fmax

½p� do; ð11Þ

where we have set the FF to the maximum value Fmax
½p� � Fmax

½p� ðn; aÞ of the peaks

in the passband. This value increases with pulse number and sequence order and
must be calculated explicitly for a particular base sequence. For sufficiently large m,
the oscillatory factor in the integrand may be approximated in terms of a Dirac
comb,

sin2ðmoTp=2Þ
sin2ðoTp=2Þ �

2pm
Tp

X1
n¼ �1

d o� 2pn
Tp

� �
: ð12Þ

This allows us to write

whigh

½p�m�
tFmax

½p� ðn; apÞ
gor

c

Tp

X1
n¼ 1

2pn
Tp

� ��ðrþ 2Þ

¼
mgTpFmax

½p� ðn; apÞ
4p2

ocTp

2p

� �r

zðrþ 2Þ; ð13Þ

where we have exploited the fact that 0ooco2p/Tp and z(s) denotes the Riemann
zeta function.

The error due to the soft rolloff at high frequencies thus increases linearly with
m (hence Ts¼mTp), as intuition suggests. As the zeta function is decreasing with r
and attains its maximum value at r¼ 0, corresponding to an infinite white noise
floor, we obtain the following upper bound (recall that z(2)¼ p2/6):

whigh

½p�m�
t

1
24

mgTpFmax
½p� ðn; apÞ

ocTp

2p

� �r

: ð14Þ

By equating whigh

½p�m�
¼ 2wlow

½p�1 and using Equations 9–14, we finally arrive at the
desired lower-bound:

mmax\
48

Fmax
½p� ðn; apÞ

2p
ocTp

� �r wlow
½p�1

gTp

 !
: ð15Þ

The above estimate can be applied, in particular, to the specific situation
analysed in the main text: base sequence CDD4 with t¼ 1 ms, DCG implementa-
tions with tpr10 ns, and s¼ � 2. In this case TpE16 ms, ap¼ 4, Fmax

½p� ðn; apÞ¼ 256,
Abb ¼ � iT5

p=214, and one can effectively neglect the contribution to mmax due to
pulse errors to within the accuracy of this lower bound. Let x�Tpoc/2p which, by
the assumed plateau condition, ranges within [0,1]. Then we may rewrite

mmax\
3p6

5�225
x� rþ 7; ð16Þ

implying that, for instance, at least 105 repetitions are allowed at x¼ 0.001 if rZ6,
and at least 104 at x¼ 0.01 if rZ8. At the value x¼ 0.16, corresponding to
oc/2p as used in the main text, r\18 ensures mmax\104 hence a storage time of
about TsE0.1 s with error as low as 10� 9. As demonstrated by the data in Fig. 4,
Ts is in fact in excess of 1 s under the assumed Gaussian cutoff, which is realistic for
this system. In general, we have verified by direct numerical evaluation of the
error integral in Equation (10) that, although qualitatively correct, the lower bound
in Equation (16) can significantly under-estimate the achievable plateau length
(for example, at x¼ 0.16, a storage time TsE0.1 s is reached already at r\15).
Altogether, this analysis thus indicates that high-frequency tails do not pose a
practically significant limitation provided that the noise falls off sufficiently fast, as
anticipated.
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