51 research outputs found
Year in review in Intensive Care Medicine 2009: I. Pneumonia and infections, sepsis, outcome, acute renal failure and acid base, nutrition and glycaemic control
Journal ArticleReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe
Age of Transfused Blood in Critically Ill Adults
International audienceBetween March 2009 and May 2014, at 64 centers in Canada and Europe, 1211 patients were assigned to receive fresh red cells (fresh-blood group) and 1219 patients were assigned to receive standard-issue red cells (standard-blood group). Red cells were stored a mean (±SD) of 6.1±4.9 days in the fresh-blood group as compared with 22.0±8.4 days in the standard-blood group (P<0.001). At 90 days, 448 patients (37.0%) in the fresh-blood group and 430 patients (35.3%) in the standard-blood group had died (absolute risk difference, 1.7 percentage points; 95% confidence interval [CI], -2.1 to 5.5). In the survival analysis, the hazard ratio for death in the fresh-blood group, as compared with the standard-blood group, was 1.1 (95% CI, 0.9 to 1.2; P=0.38). There were no significant between-group differences in any of the secondary outcomes (major illnesses; duration of respiratory, hemodynamic, or renal support; length of stay in the hospital; and transfusion reactions) or in the subgroup analyses.CONCLUSIONS:Transfusion of fresh red cells, as compared with standard-issue red cells, did not decrease the 90-day mortality among critically ill adults
Impact of species and antibiotic therapy of enterococcal peritonitis on 30-day mortality in critical care - An analysis of the OUTCOMEREA database
Introduction: Enterococcus species are associated with an increased morbidity in intraabdominal infections (IAI). However, their impact on mortality remains uncertain. Moreover, the influence on outcome of the appropriate or inappropriate status of initial antimicrobial therapy (IAT) is subjected to debate, except in septic shock. The aim of our study was to evaluate whether an IAT that did not cover Enterococcus spp. was associated with 30-day mortality in ICU patients presenting with IAI growing with Enterococcus spp. Material and methods: Retrospective analysis of French database OutcomeRea from 1997 to 2016. We included all patients with IAI with a peritoneal sample growing with Enterococcus. Primary endpoint was 30-day mortality. Results: Of the 1017 patients with IAI, 76 (8%) patients were included. Thirty-day mortality in patients with inadequate IAT against Enterococcus was higher (7/18 (39%) vs 10/58 (17%), p = 0.05); however, the incidence of postoperative complications was similar. Presence of Enterococcus spp. other than E. faecalis alone was associated with a significantly higher mortality, even greater when IAT was inadequate. Main risk factors for having an Enterococcus other than E. faecalis alone were as follows: SAPS score on day 0, ICU-acquired IAI, and antimicrobial therapy within 3 months prior to IAI especially with third-generation cephalosporins. Univariate analysis found a higher hazard ratio of death with an Enterococcus other than E. faecalis alone that had an inadequate IAT (HR = 4.4 [1.3-15.3], p = 0.019) versus an adequate IAT (HR = 3.1 [1.0-10.0], p = 0.053). However, after adjusting for confounders (i.e., SAPS II and septic shock at IAI diagnosis, ICU-acquired peritonitis, and adequacy of IAT for other germs), the impact of the adequacy of IAT was no longer significant in multivariate analysis. Septic shock at diagnosis and ICU-acquired IAI were prognostic factors. Conclusion: An IAT which does not cover Enterococcus is associated with an increased 30-day mortality in ICU patients presenting with an IAI growing with Enterococcus, especially when it is not an E. faecalis alone. It seems reasonable to use an IAT active against Enterococcus in severe postoperative ICU-acquired IAI, especially when a third-generation cephalosporin has been used within 3 months. © 2019 The Author(s)
Autoantibodies against type I IFNs in patients with critical influenza pneumonia
In an international cohort of 279 patients with hypoxemic influenza pneumonia, we identified 13 patients (4.6%) with autoantibodies neutralizing IFN-alpha and/or -omega, which were previously reported to underlie 15% cases of life-threatening COVID-19 pneumonia and one third of severe adverse reactions to live-attenuated yellow fever vaccine. Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-alpha 2 alone (five patients) or with IFN-omega (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-alpha 2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-omega. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients 70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-alpha 2 and IFN-omega (OR = 11.7, P = 1.3 x 10(-5)), especially those <70 yr old (OR = 139.9, P = 3.1 x 10(-10)). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for similar to 5% of cases of life-threatening influenza pneumonia in patients <70 yr old
Management and outcomes of acute respiratory distress syndrome patients with and without comorbid conditions
International audienceThe standard of care for patients with acute respiratory distress syndrome (ARDS) has been developed based on studies that usually excluded patients with major comorbidities. To describe treatments and outcomes according to comorbidities in patients with ARDS admitted to 19 ICUs (1997-2014). Patients were grouped based on comorbidities. Determinants of day-28 mortality were identified by multivariable Cox analysis stratified on center. Among 4953 ARDS patients, 2545 (51.4%) had major comorbidities; the proportion with major comorbidities increased after 2008. Hematological malignancy was associated with severe ARDS and rescue therapies for refractory hypoxemia. COPD, HIV infection, and hematological malignancy were associated with a lower likelihood of invasive mechanical ventilation on the admission day. Admission-day SOFA score was higher in patients with major comorbidities, who more often received vasopressors, dialysis, or treatment-limitation decisions. Day-28 mortality was 33.7% overall, 27.2% in patients without major comorbidities, and 31.1% (COPD) to 56% (hematological malignancy) in patients with major comorbidities. By multivariable analysis, mortality was lower in patients with COPD and higher in those with chronic heart failure, solid tumors, or hematological malignancies. Mortality was independently associated with PaO2/FiO2 and PaCO2 on day 1, ARDS of pulmonary origin, worse SOFA score, and ICU-acquired events. Half the patients with ARDS had major comorbidities, which were associated with severe ARDS, multiple organ dysfunction, and day-28 mortality. These findings do not support the exclusion of ARDS patients with severe comorbidities from randomized clinical trials. Trials in ARDS patients with whatever comorbidities are warranted
A Comparison of the Mortality Risk Associated With Ventilator-Acquired Bacterial Pneumonia and Nonventilator ICU-Acquired Bacterial Pneumonia
International audienceOBJECTIVES: To investigate the respective impact of ventilator-associated pneumonia and ICU-hospital-acquired pneumonia on the 30-day mortality of ICU patients. DESIGN: Longitudinal prospective studies. SETTING: French ICUs. PATIENTS: Patients at risk of ventilator-associated pneumonia and ICU-hospital-acquired pneumonia. INTERVENTIONS: The first three episodes of ventilator-associated pneumonia or ICU-hospital-acquired pneumonia were handled as time-dependent covariates in Cox models. We adjusted using the case-mix, illness severity, Simplified Acute Physiology Score II score at admission, and procedures and therapeutics used during the first 48 hours before the risk period. Baseline characteristics of patients with regard to the adequacy of antibiotic treatment were analyzed, as well as the Sequential Organ Failure Assessment score variation in the 2 days before the occurrence of ventilator-associated pneumonia or ICU-hospital-acquired pneumonia. Mortality was also analyzed for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species(ESKAPE) and P. aeruginosa pathogens. MEASUREMENTS AND MAIN RESULTS: Of 14,212 patients who were admitted to the ICUs and who stayed for more than 48 hours, 7,735 were at risk of ventilator-associated pneumonia and 9,747 were at risk of ICU-hospital-acquired pneumonia. Ventilator-associated pneumonia and ICU-hospital-acquired pneumonia occurred in 1,161 at-risk patients (15%) and 176 at-risk patients (2%), respectively. When adjusted on prognostic variables, ventilator-associated pneumonia (hazard ratio, 1.38 (1.24-1.52); p \textless 0.0001) and even more ICU-hospital-acquired pneumonia (hazard ratio, 1.82 [1.35-2.45]; p \textless 0.0001) were associated with increased 30-day mortality. The early antibiotic therapy adequacy was not associated with an improved prognosis, particularly for ICU-hospital-acquired pneumonia. The impact was similar for ventilator-associated pneumonia and ICU-hospital-acquired pneumonia mortality due to P. aeruginosa and the ESKAPE group. CONCLUSIONS: In a large cohort of patients, we found that both ICU-hospital-acquired pneumonia and ventilator-associated pneumonia were associated with an 82% and a 38% increase in the risk of 30-day mortality, respectively. This study emphasized the importance of preventing ICU-hospital-acquired pneumonia in nonventilated patients
- …