54 research outputs found

    The GNSS-R Eddy Experiment II: L-band and Optical Speculometry for Directional Sea-Roughness Retrieval from Low Altitude Aircraft

    Full text link
    We report on the retrieval of directional sea-roughness (the full directional mean square slope, including MSS, direction and isotropy) through inversion of Global Navigation Satellite System Reflections (GNSS-R) and SOlar REflectance Speculometry (SORES)data collected during an experimental flight at 1000 m. The emphasis is on the utilization of the entire Delay-Doppler Map (for GNSS-R) or Tilt Azimuth Map (for SORES) in order to infer these directional parameters. Obtained estimations are analyzed and compared to Jason-1 measurements and the ECMWF numerical weather model.Comment: Proceedings from the 2003 Workshop on Oceanography with GNSS Reflections, Barcelona, Spain, 200

    Sea state monitoring using coastal GNSS-R

    Full text link
    We report on a coastal experiment to study GPS L1 reflections. The campaign was carried out at the Barcelona Port breaker and dedicated to the development of sea-state retrieval algorithms. An experimental system built for this purpose collected and processed GPS data to automatically generate a times series of the interferometric complex field (ICF). The ICF was analyzed off line and compared to a simple developed model that relates ICF coherence time to the ratio of significant wave height (SWH) and mean wave period (MWP). The analysis using this model showed good consistency between the ICF coherence time and nearby oceanographic buoy data. Based on this result, preliminary conclusions are drawn on the potential of coastal GNSS-R for sea state monitoring using semi-empirical modeling to relate GNSS-R ICF coherence time to SWH.Comment: All Starlab authors have contributed significantly; the Starlab author list has been ordered randomly. Submitted to GR

    The Eddy Experiment: accurate GNSS-R ocean altimetry from low altitude aircraft

    Full text link
    During the Eddy Experiment, two synchronous GPS receivers were flown at 1 km altitude to collect L1 signals and their reflections from the sea surface for assessment of altimetric precision and accuracy. Wind speed (U10) was around 10 m/s, and SWH up to 2 m. A geophysical parametric waveform model was used for retracking and estimation of the lapse between the direct and reflected signals with a 1-second precision of 3 m. The lapse was used to estimate the SSH along the track using a differential model. The RMS error of the 20 km averaged GNSS-R absolute altimetric solution with respect to Jason-1 SSH and a GPS buoy measurement was of 10 cm, with a 2 cm mean difference. Multipath and retracking parameter sensitivity due to the low altitude are suspected to have degraded accuracy. This result provides an important milestone on the road to a GNSS-R mesoscale altimetry space mission.Comment: All Starlab authors have contributed significantly; the Starlab Author list has been ordered randoml

    Secondary infertility caused by the retention of fetal bones after an abortion: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Unwanted contraception through prolonged retention of fetal bone is a rare cause of secondary infertility. It is usually associated with a history of abortion, either spontaneous or induced.</p> <p>Case presentation</p> <p>We describe a case of intrauterine retention of fetal bone diagnosed 8 years after the termination of a pregnancy. The patient had no complaints of pain, irregular vaginal bleeding or discharge. A hysteroscopy was performed and irregular structures were removed. These fragments were fetal bones, which probably functioned as an intrauterine contraceptive device. After removal of the fetal bone fragments the patient conceived spontaneously within 6 months.</p> <p>Conclusion</p> <p>This case report stresses the importance of taking a thorough history and evaluation of the endometrium by transvaginal ultrasound or hysteroscopy in women with secondary infertility.</p

    Structural Basis for the Regulation Mechanism of the Tyrosine Kinase CapB from Staphylococcus aureus

    Get PDF
    Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function

    The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response

    Get PDF
    TANK-binding kinase 1 (TBK1) is of central importance for the induction of type-I interferon (IFN) in response to pathogens. We identified the DEAD-box helicase DDX3X as an interaction partner of TBK1. TBK1 and DDX3X acted synergistically in their ability to stimulate the IFN promoter, whereas RNAi-mediated reduction of DDX3X expression led to an impairment of IFN production. Chromatin immunoprecipitation indicated that DDX3X is recruited to the IFN promoter upon infection with Listeria monocytogenes, suggesting a transcriptional mechanism of action. DDX3X was found to be a TBK1 substrate in vitro and in vivo. Phosphorylation-deficient mutants of DDX3X failed to synergize with TBK1 in their ability to stimulate the IFN promoter. Overall, our data imply that DDX3X is a critical effector of TBK1 that is necessary for type I IFN induction

    Characterization of the Endothelial Cell Cytoskeleton following HLA Class I Ligation

    Get PDF
    Vascular endothelial cells (ECs) are a target of antibody-mediated allograft rejection. In vitro, when the HLA class I molecules on the surface of ECs are ligated by anti-HLA class I antibodies, cell proliferation and survival pathways are activated and this is thought to contribute to the development of antibody-mediated rejection. Crosslinking of HLA class I molecules by anti-HLA antibodies also triggers reorganization of the cytoskeleton, which induces the formation of F-actin stress fibers. HLA class I induced stress fiber formation is not well understood.The present study examines the protein composition of the cytoskeleton fraction of ECs treated with HLA class I antibodies and compares it to other agonists known to induce alterations of the cytoskeleton in endothelial cells. Analysis by tandem mass spectrometry revealed unique cytoskeleton proteomes for each treatment group. Using annotation tools a candidate list was created that revealed 12 proteins, which were unique to the HLA class I stimulated group. Eleven of the candidate proteins were phosphoproteins and exploration of their predicted kinases provided clues as to how these proteins may contribute to the understanding of HLA class I induced antibody-mediated rejection. Three of the candidates, eukaryotic initiation factor 4A1 (eIF4A1), Tropomyosin alpha 4-chain (TPM4) and DDX3X, were further characterized by Western blot and found to be associated with the cytoskeleton. Confocal microscopy analysis showed that class I ligation stimulated increased eIF4A1 co-localization with F-actin and paxillin.Colocalization of eIF4A1 with F-actin and paxillin following HLA class I ligation suggests that this candidate protein could be a target for understanding the mechanism(s) of class I mediated antibody-mediated rejection. This proteomic approach for analyzing the cytoskeleton of ECs can be applied to other agonists and various cells types as a method for uncovering novel regulators of cytoskeleton changes
    corecore