44 research outputs found

    Flt3(+) macrophage precursors commit sequentially to osteoclasts, dendritic cells and microglia

    Get PDF
    BACKGROUND: Macrophages, osteoclasts, dendritic cells, and microglia are highly specialized cells that belong to the mononuclear phagocyte system. Functional and phenotypic heterogeneity within the mononuclear phagocyte system may reveal differentiation plasticity of a common progenitor, but developmental pathways leading to such diversity are still unclear. RESULTS: Mouse bone marrow cells were expanded in vitro in the presence of Flt3-ligand (FL), yielding high numbers of non-adherent cells exhibiting immature monocyte characteristics. Cells expanded for 6 days, 8 days, or 11 days (day 6-FL, day 8-FL, and day 11-FL cells, respectively) exhibited constitutive potential towards macrophage differentiation. In contrast, they showed time-dependent potential towards osteoclast, dendritic, and microglia differentiation that was detected in day 6-, day 8-, and day 11-FL cells, in response to M-CSF and receptor activator of NFκB ligand (RANKL), granulocyte-macrophage colony stimulating-factor (GM-CSF) and tumor necrosis factor-α (TNFα), and glial cell-conditioned medium (GCCM), respectively. Analysis of cell proliferation using the vital dye CFSE revealed homogenous growth in FL-stimulated cultures of bone marrow cells, demonstrating that changes in differential potential did not result from sequential outgrowth of specific precursors. CONCLUSIONS: We propose that macrophages, osteoclasts, dendritic cells, and microglia may arise from expansion of common progenitors undergoing sequential differentiation commitment. This study also emphasizes differentiation plasticity within the mononuclear phagocyte system. Furthermore, selective massive cell production, as shown here, would greatly facilitate investigation of the clinical potential of dendritic cells and microglia

    Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS

    Get PDF
    Background: Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline’s functions are not well defined. Methods: Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results: Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/ macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/ Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion: Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation. Citation: Campbell JH, Burdo TH, Autissier P, Bombardier JP, Westmoreland SV, et al. (2011) Minocycline Inhibition of Monocyte Activation Correlate

    Increased Monocyte Turnover from Bone Marrow Correlates with Severity of SIV Encephalitis and CD163 Levels in Plasma

    Get PDF
    Cells of the myeloid lineage are significant targets for human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in monkeys. Monocytes play critical roles in innate and adaptive immunity during inflammation. We hypothesize that specific subsets of monocytes expand with AIDS and drive central nervous system (CNS) disease. Additionally, there may be expansion of cells from the bone marrow through blood with subsequent macrophage accumulation in tissues driving pathogenesis. To identify monocytes that recently emigrated from bone marrow, we used 5-bromo-2′-deoxyuridine (BrdU) labeling in a longitudinal study of SIV-infected CD8+ T lymphocyte depleted macaques. Monocyte expansion and kinetics in blood was assessed and newly migrated monocyte/macrophages were identified within the CNS. Five animals developed rapid AIDS with differing severity of SIVE. The percentages of BrdU+ monocytes in these animals increased dramatically, early after infection, peaking at necropsy where the percentage of BrdU+ monocytes correlated with the severity of SIVE. Early analysis revealed changes in the percentages of BrdU+ monocytes between slow and rapid progressors as early as 8 days and consistently by 27 days post infection. Soluble CD163 (sCD163) in plasma correlated with the percentage of BrdU+ monocytes in blood, demonstrating a relationship between monocyte activation and expansion with disease. BrdU+ monocytes/macrophages were found within perivascular spaces and SIVE lesions. The majority (80–90%) of the BrdU+ cells were Mac387+ that were not productively infected. There was a minor population of CD68+BrdU+ cells (<10%), very few of which were infected (<1% of total BrdU+ cells). Our results suggest that an increased rate of monocyte recruitment from bone marrow into the blood correlates with rapid progression to AIDS, and the magnitude of BrdU+ monocytes correlates with the severity of SIVE

    Haematopoietic stem cells and mesenchymal stem cells as tools for present and future cellular therapies

    No full text
    Postnatal stem cells are present in many adult tissues, and are thought to ensure homoeostasis by replacing functionally declining cells by newly differentiated ones. Postnatal stem cells used as such or after in vitro manipulation hold out strong hopes for reconstructive therapies. For instance, the grafting of native haematopoietic stem cells (HSC) restores haematopoiesis in genetically deficient individuals or in lethally conditioned leukaemic patients, and systemic injection of in vitro amplified mesenchymal stem cells (MSC) induces recovery of bone growth in patients with osteogenesis imperfecta. Moreover, cells differentiated in vitro from postnatal stem cells exhibiting a specific function can also be used for cell therapy. Myeloid dendritic cells (DC) derived from cultures of HSC may induce tumour-specific cytotoxic T lymphocytes to eradicate the tumour via antigen recognition. In addition, long-lived MSC has been engineered to secrete specific proteins coded by a transgene and used as a source of therapeutic molecules in vivo. All these approaches require large quantities of cells that cannot be obtained (with the exception of HSC) directly from the donor. In vitro procedures allowing the production of therapeutic cells from postnatal stem cells are needed and are at present under development. Below we discuss the rationale and methods currently available for generation of therapeutic cells derived from haematopoietic and mesenchymal stem cells

    Effects of training and detraining on adiponectin plasma concentration and muscle sensitivity in lean and overweight men

    No full text
    International audiencePurpose To delineate the direct effect of physical activityon adiponectin metabolism, we investigated the impact ofcontrasted physical activity changes, independent of bodymass changes, on adiponectin plasma concentration andmuscle sensitivity in lean and overweight adult males.Methods Eleven physically active lean men (70.6 ± 2.1 kg)were subjected to 1-month detraining; 9 sedentary leanmen (73.1 ± 3.3 kg); and 11 sedentary overweight men(97.5 ± 3.0 kg) participated in a 2-month aerobic-exercisetraining program. Diet was controlled to maintain stableenergy balance. Body composition, VO2peak, circulatingadiponectin, adipose and muscle tissue adiponectin, muscleadiponectin receptors, and APPL1 mRNAs were measuredbefore and after the interventions.Results At baseline, plasma high-molecular-weightadiponectin concentration was lower in both activelean (5.44 ± 0.58 μg/mL) and sedentary overweigh (5.30 ± 1.06 μg/mL) than in sedentary lean participants(7.44 ± 1.06 μg/mL; both p < 0.05). Training reduced totaland high-molecular-weight adiponectin concentrationsby, respectively, −32 and −42 % in sedentary lean, and−26 and −35 % in sedentary overweight, while detrainingincreased them by +25 and +27 % in active lean participants.Total and high-molecular-weight adiponectinchanges were inversely correlated with VO2peak changes(respectively, R2 = 0.45, R2 = 0.59; both p < 0.001) andpositively with changes in fasting plasma insulin (bothp < 0.05). Muscle and adipose tissue adiponectin mRNAdid not differ between groups and with interventions. MuscleAdipoR2 and APPL1 mRNAs were lower in sedentarygroups compared with the active group; and were positivelyassociated with VO2peak and inversely with fasting plasmainsulin concentration.Conclusion Plasma adiponectin concentration is inverselycorrelated with aerobic capacity. Future investigations willneed to confirm the contribution of changes in muscle adiponectinsensitivity

    Distinct Phenotype, Longitudinal Changes of Numbers and Cell-Associated Virus in Blood Dendritic Cells in SIV-Infected CD8-Lymphocyte Depleted Macaques

    No full text
    <div><p>Loss of circulating CD123+ plasmacytoid dendritic cells (pDCs) during HIV infection is well established. However, changes of myeloid DCs (mDCs) are ambiguous since they are studied as a homogeneous CD11c+ population despite phenotypic and functional heterogeneity. Heterogeneity of CD11c+ mDCs in primates is poorly described in HIV and SIV infection. Using multiparametric flow cytometry, we monitored longitudinally cell number and cell-associated virus of CD123+ pDCs and non-overlapping subsets of CD1c+ and CD16+ mDCs in SIV-infected CD8-depleted rhesus macaques. The numbers of all three DC subsets were significantly decreased by 8 days post-infection. Whereas CD123+ pDCs were persistently depleted, numbers of CD1c+ and CD16+ mDCs rebounded. Numbers of CD1c+ mDCs significantly increased by 3 weeks post-infection while numbers of CD16+ mDCs remained closer to pre-infection levels. We found similar changes in the numbers of all three DC subsets in CD8 depleted animals as we found in animals that were SIV infected animals that were not CD8 lymphocyte depleted. CD16+ mDCs and CD123+ pDCs but not CD1c+ mDCs were significantly decreased terminally with AIDS. All DC subsets harbored SIV RNA as early as 8 days and then throughout infection. However, SIV DNA was only detected in CD123+ pDCs and only at 40 days post-infection consistent with SIV RNA, at least in mDCs, being surface-bound. Altogether our data demonstrate that SIV infection differently affects CD1c+ and CD16+ mDCs where CD16+ but not CD1c+ mDCs are depleted and might be differentially regulated in terminal AIDS. Finally, our data underline the importance of studying CD1c+ and CD16+ mDCs as discrete populations, and not as total CD11c+ mDCs.</p></div
    corecore