1,123 research outputs found

    Elementary excitation families and their frequency ordering in cylindrically symmetric Bose-Einstein condensates

    Full text link
    We present a systematic classification of the elementary excitations of Bose-Einstein condensates in cylindrical traps in terms of their shapes. The classification generalizes the concept of families of excitations first identified by Hutchinson and Zaremba (1998) Phys. Rev. A 57 1280 by introducing a second classification number that allows all possible modes to be assigned to a family. We relate the energy ordering of the modes to their family classification, and provide a simple model which explains the relationship.Comment: 15 pages, 8 figures; abstract complemented, section 4.2 shortened, references corrected; to be published in J. Phys.

    Anode power deposition in applied-field MPD thrusters

    Get PDF
    Anode power deposition is the principal performance limiter of magnetoplasmadynamic (MPD) thrusters. Current thrusters lose between 50 and 70 percent of the input power to the anode. In this work, anode power deposition was studied for three cylindrical applied magnetic field thrusters for a range of argon propellant flow rates, discharge currents, and applied-field strengths. Between 60 and 95 percent of the anode power depositions resulted from electron current conduction into the anode, with cathode radiation depositing between 5 and 35 percent of the anode power, and convective heat transfer from the hot plasma accounting for less than 5 percent. While the fractional anode power loss decreased with increasing applied-field strength and anode size, the magnitude of the anode power increased. The rise in anode power resulted from a linear rise in the anode fall voltage with applied-field strength and anode radius. The anode fall voltage also rose with decreasing propellant flow rate. The trends indicate that the anode fall region is magnetized, and suggest techniques for reducing the anode power loss in MPD thrusters

    The measurement problem in the light of the theory of decoherence

    Full text link
    Endeavoring to formulate an exhaustive solution to the measurement problem in view of the theory of decoherence leads to a better understanding of the status of the collapse and of the emergence of classicality, thanks to a precise definition of the measurement and some new vocabulary to speak about quantum mechanics. Considering the latter as a probabilistic theory all along allows us to avoid the usual probability problem of the many-worlds interpretations. A thorough verification of the consistency of quantum mechanics at all scales is proposed, as well as a discussion of what can be deemed an observer

    Locating the Temperature Switch for a Drag Reducing Solution

    Get PDF
    Low-cost and environmentally friendly district heating has become a popular trend in northern Europe. These systems use excess heat from plants or factories to heat water, which is then used to supply heat to homes and buildings in the surrounding area. To decrease costs in these systems, studies have shown that a drag reducing surfactant additive can be added to the hot water in order to increase the flow rate without requiring additional pumping energy. However, due to their tendency to reduce turbulent mixing, drag reducing solutions are not typically effective heat transfer fluids. For this reason, it is desirable to develop drag reducing solutions with switchable properties such that they will be drag reducing in part of the district heating system and non-drag reducing in other sections. In this study two solutions were developed showing less than 1 degree Celsius temperature switchability.No embargoAcademic Major: Chemical Engineerin

    Logical implications between fundamental properties of relativistic quantum theories

    Full text link
    A mathematical consistency condition constraining any relativistic quantum theory is formulated. It turns out to be equivalent to the locality of physics as well as, in the context of quantum field theory, microcausality, thereby revealing that these are actually two redundant hypotheses. It also promotes an epistemic interpretation of the wavefunction collapse, helps address unsolved problems related to nonlocal measurements and provides a new proof of the non-measurability of fermionic fields.Comment: This work formerly appeared in arXiv:2303.03465v1 which was subsequently split into two: one is the new version arXiv:2303.03465v2, the other is the present pape

    Modeling Neutral Densities Downstream of a Gridded Ion Thruster

    Get PDF
    The details of a model for determining the neutral density downstream of a gridded ion thruster are presented. An investigation of the possible sources of neutrals emanating from and surrounding a NEXT ion thruster determined that the most significant contributors to the downstream neutral density include discharge chamber neutrals escaping through the perforated grids, neutrals escaping from the neutralizer, and vacuum facility background neutrals. For the neutral flux through the grids, near- and far-field equations are presented for rigorously determining the neutral density downstream of a cylindrical aperture. These equations are integrated into a spherically-domed convex grid geometry with a hexagonal array of apertures for determining neutral densities downstream of the ion thruster grids. The neutrals escaping from an off-center neutralizer are also modeled assuming diffuse neutral emission from the neutralizer keeper orifice. Finally, the effect of the surrounding vacuum facility neutrals is included and assumed to be constant. The model is used to predict the neutral density downstream of a NEXT ion thruster with and without neutralizer flow and a vacuum facility background pressure. The impacts of past simplifying assumptions for predicting downstream neutral densities are also examined for a NEXT ion thruster

    Multiple Hollow Cathode Wear Testing for the Space Station Plasma Contactor

    Get PDF
    A wear test of four hollow cathodes was conducted to resolve issues associated with the Space Station plasma contactor. The objectives of this test were to evaluate unit-to-unit dispersions, verify the transportability of contamination control protocols developed by the project, and to evaluate cathode contamination control and activation procedures to enable simplification of the gas feed system and heater power processor. These objectives were achieved by wear testing four cathodes concurrently to 2000 hours. Test results showed maximum unit-to-unit deviations for discharge voltages and cathode tip temperatures to be +/-3 percent and +/-2 percent, respectively, of the nominal values. Cathodes utilizing contamination control procedures known to increase cathode lifetime showed no trends in their monitored parameters that would indicate a possible failure, demonstrating that contamination control procedures had been successfully transferred. Comparisons of cathodes utilizing and not utilizing a purifier or simplified activation procedure showed similar behavior during wear testing and pre- and post-test performance characterizations. This behavior indicates that use of simplified cathode systems and procedures is consistent with long cathode lifetimes

    The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    Get PDF
    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT1). A similar analysis that was conducted for the NASA's Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future post-test analyses are incorporated. The worst-case impact of carbon back-sputtering was determined to be the full power operating condition, but the maximum impact of back-sputtered carbon was only a 4 percent reduction in wear rate. As a result, back-sputtered carbon is estimated to have an insignificant impact on the first failure mode of the NEXT LDT1 at all operating conditions

    Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    Get PDF
    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively

    Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids

    Get PDF
    An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients
    • …
    corecore