469 research outputs found

    Lines of Curvature, Umbilic Points and Caratheodory Conjecture

    Get PDF
    Lines of Curvature, Umbilic Points and Caratheodory Conjectur

    Object Tracking from Unstabilized Platforms by Particle Filtering with Embedded Camera Ego Motion

    Get PDF
    Visual tracking with moving cameras is a challenging task. The global motion induced by the moving camera moves the target object outside the expected search area, according to the object dynamics. The typical approach is to use a registration algorithm to compensate the camera motion. However, in situations involving several moving objects, and backgrounds highly affected by the aperture problem, image registration quality may be very low, decreasing dramatically the performance of the tracking. In this work, a novel approach is proposed to successfully tackle the tracking with moving cameras in complex situations, which involve several independent moving objects. The key idea is to compute several hypotheses for the camera motion, instead of estimating deterministically only one. These hypotheses are combined with the object dynamics in a Particle Filter framework to predict the most probable object locations. Then, each hypothetical object location is evaluated by the measurement model using a spatiogram, which is a region descriptor based on color and spatial distributions. Experimental results show that the proposed strategy allows to accurately track an object in complex situations affected by strong ego motion

    Robust automatic target tracking based on a Bayesian ego-motion compensation framework for airborne FLIR imagery

    Get PDF
    Automatic target tracking in airborne FLIR imagery is currently a challenge due to the camera ego-motion. This phenomenon distorts the spatio-temporal correlation of the video sequence, which dramatically reduces the tracking performance. Several works address this problem using ego-motion compensation strategies. They use a deterministic approach to compensate the camera motion assuming a specific model of geometric transformation. However, in real sequences a specific geometric transformation can not accurately describe the camera ego-motion for the whole sequence, and as consequence of this, the performance of the tracking stage can significantly decrease, even completely fail. The optimum transformation for each pair of consecutive frames depends on the relative depth of the elements that compose the scene, and their degree of texturization. In this work, a novel Particle Filter framework is proposed to efficiently manage several hypothesis of geometric transformations: Euclidean, affine, and projective. Each type of transformation is used to compute candidate locations of the object in the current frame. Then, each candidate is evaluated by the measurement model of the Particle Filter using the appearance information. This approach is able to adapt to different camera ego-motion conditions, and thus to satisfactorily perform the tracking. The proposed strategy has been tested on the AMCOM FLIR dataset, showing a high efficiency in the tracking of different types of targets in real working conditions

    Automatic Feature-Based Stabilization of Video with Intentional Motion through a Particle Filter

    Get PDF
    Video sequences acquired by a camera mounted on a hand held device or a mobile platform are affected by unwanted shakes and jitters. In this situation, the performance of video applications, such us motion segmentation and tracking, might dramatically be decreased. Several digital video stabilization approaches have been proposed to overcome this problem. However, they are mainly based on motion estimation techniques that are prone to errors, and thus affecting the stabilization performance. On the other hand, these techniques can only obtain a successfully stabilization if the intentional camera motion is smooth, since they incorrectly filter abrupt changes in the intentional motion. In this paper a novel video stabilization technique that overcomes the aforementioned problems is presented. The motion is estimated by means of a sophisticated feature-based technique that is robust to errors, which could bias the estimation. The unwanted camera motion is filtered, while the intentional motion is successfully preserved thanks to a Particle Filter framework that is able to deal with abrupt changes in the intentional motion. The obtained results confirm the effectiveness of the proposed algorith

    Aerial moving target detection based on motion vector field analysis

    Get PDF
    An efficient automatic detection strategy for aerial moving targets in airborne forward-looking infrared (FLIR) imagery is presented in this paper. Airborne cameras induce a global motion over all objects in the image, that invalidates motion-based segmentation techniques for static cameras. To overcome this drawback, previous works compensate the camera ego-motion. However, this approach is too much dependent on the quality of the ego-motion compensation, tending towards an over-detection. In this work, the proposed strategy estimates a robust motion vector field, free of erroneous vectors. Motion vectors are classified into different independent moving objects, corresponding to background objects and aerial targets. The aerial targets are directly segmented using their associated motion vectors. This detection strategy has a low computational cost, since no compensation process or motion-based technique needs to be applied. Excellent results have been obtained over real FLIR sequences

    La conversión de la pena y el delito de agresión contra la mujer en el Juzgado Penal de Lamas, 2019

    Get PDF
    El presente trabajo de investigación tuvo por finalidad determinar de qué manera la conversión de la pena ha logrado disminuir los índices de agresiones contra la mujer e integrantes del grupo familiar en el Juzgado Penal Unipersonal de Lamas, 2019. Para ello, se aplicaron técnicas e instrumentos como la guía de entrevista y análisis de documentos, determinándose que luego de la incorporación de dicho tipo penal, se cuestionó el hecho de que simboliza un ataque mínimo a la integridad, contra la mujer o contra algún miembro de la familia; sosteniendo que por su escasa lesividad al bien jurídico protegido no debe ser criminalizado, debido a que las lesiones que se han criminalizado son lesiones levísimas, es decir, nivel de afectación menor al tipo penal de lesiones leves. En tanto, se concluye que el proceso de conversión de la pena desde el ámbito jurídico se observa que se respetan los derechos del investigado, se protege la estructura del proceso penal y se garantiza la política criminal como un fundamento para garantizar el estado de derecho
    corecore