37 research outputs found

    Comparison between measured tissue phantom ratio values and calculated from percent depth doses with and without peak scatter correction factor in a 6 MV beam

    Get PDF
    The purpose of this study is to examine the accuracy of calculated tissue phantom ratio (TPR) data with measured TPR values of a 6MV photon beam. TPR was calculated from the measured percent depth dose (PDD) values using 2 methods – with and without correcting for the differences in peak scatter fraction (PSF). Mean error less than 1% was observed between the measured and calculated TPR values with the PSF correction, for all clinically relevant field sizes and depths. When not accounting for the PSF correction, mean difference between the measured and calculated TPR values was larger than 1% for square field sizes ranging from 3 cm to 10 cm

    Artificial intelligence based deconvolving on megavoltage photon beam profiles for radiotherapy applications

    Get PDF
    Objective. The aim of this work is an AI based approach to reduce the volume effect of ionization chambers used to measure high energy photon beams in radiotherapy. In particular for profile measurements, the air-filled volume leads to an inaccurate measurement of the penumbra. Approach. The AI-based approach presented in this study was trained with synthetic data intended to cover a wide range of realistic linear accelerator data. The synthetic data was created by randomly generating profiles and convolving them with the lateral response function of a Semiflex 3D ionization chamber. The neuronal network was implemented using the open source tensorflow.keras machine learning framework and a U-Net architecture. The approach was validated on three accelerator types (Varian TrueBeam, Elekta VersaHD, Siemens Artiste) at FF and FFF energies between 6 MV and 18 MV at three measurement depths. For each validation, a Semiflex 3D measurement was compared against a microDiamond measurement, and the AI processed Semiflex 3D measurement was compared against the microDiamond measurement. Main results. The AI approach was validated with dataset containing 306 profiles measured with Semiflex 3D ionization chamber and microDiamond. In 90% of the cases, the AI processed Semiflex 3D dataset agrees with the microDiamond dataset within 0.5 mm/2% gamma criterion. 77% of the AI processed Semiflex 3D measurements show a penumbra difference to the microDiamond of less than 0.5 mm, 99% of less than 1 mm. Significance. This AI approach is the first in the field of dosimetry which uses synthetic training data. Thus, the approach is able to cover a wide range of accelerators and the whole specified field size range of the ionization chamber. The application of the AI approach offers an quality improvement and time saving for measurements in the water phantom, in particular for large field size

    Investigation of error detection capabilities of phantom, EPID and MLC log file based IMRT QA methods

    Get PDF
    A patient specific quality assurance (QA) should detect errors that originate anywhere in the treatment planning process. However, the increasing complexity of treatment plans has increased the need for improvements in the accuracy of the patient specific pretreatment verification process. This has led to the utilization of higher resolution QA methods such as the electronic portal imaging device (EPID) as well as MLC log files and it is important to know the types of errors that can be detected with these methods. In this study, we will compare the ability of three QA methods (Delta 4 ®, MU-EPID, Dynalog QA) to detect specific errors. Multileaf collimator (MLC) errors, gantry angle, and dose errors were introduced into five volumetric modulated arc therapy (VMAT) plans for a total of 30 plans containing errors. The original plans (without errors) were measured five times with each method to set a threshold for detectability using two standard deviations from the mean and receiver operating characteristic (ROC) derived limits. Gamma passing percentages as well as percentage error of planning target volume (PTV) were used for passing determination. When applying the standard 95% pass rate at 3%/3 mm gamma analysis errors were detected at a rate of 47, 70, and 27% for the Delta 4 , MU-EPID and Dynalog QA respectively. When using thresholds set at 2 standard deviations from our base line measurements errors were detected at a rate of 60, 30, and 47% for the Delta 4 , MU-EPID and Dynalog QA respectively. When using ROC derived thresholds errors were detected at a rate of 60, 27, and 47% for the Delta 4 , MU-EPID and Dynalog QA respectively. When using dose to the PTV and the Dynalog method 11 of the 15 small MLC errors were detected while none were caught using gamma analysis. A combination of the EPID and Dynalog QA methods (scaling Dynalog doses using EPID images) matches the detection capabilities of the Delta 4 by adding additional comparison metrics. These additional metrics are vital in relating the QA measurement to the dose received by the patient which is ultimately what is being confirmed

    Commissioning and cross-comparison of four scanning water tanks

    Get PDF
    Purpose: Water scanning systems are commonly used for data collection to characterize dosimetric properties of photon and electron beams, and the commissioning of such systems has been previously described. The aim in this study, however, was to investigate tank-specific dependencies as well as conduct a dosimetric comparison between four distinct water scanning systems.Methods: Four water scanning systems were studied including the PTW MP3-M Phantom Tank, the Standard Imaging DoseView 3D, the IBA Blue Phantom, and the Sun Nuclear 3D Scanner. Mechanical accuracy and reproducibility was investigated by driving the chamber holder to nominal positions relative to a zero point and using a leveled caliper with 30 cm range to measure the actual position. Dosimetric measurements were also performed not only to compare percent-depth-dose (PDD) curves and profiles between tanks but also to assess dependencies such as directionality, scanning speed, and reproducibility for each tank individually. A PTW Semiflex 31010 ionization chamber with a sensitive volume of 0.125 cc was used at a Varian Clinac 2300 linear accelerator.Results: Mechanical precision was ensured to within 0.1 mm with the standard deviation (SD) of reproducibility <0.1 mm for measurements made with calipers. Dependencies on scanning direction and speed are presented. 6 MV PDDs between tanks agreed to within 0.6% relative to an averaged PDD beyond dmax and within 2.5% in the build-up region. Specifically, the maximum difference was 1.0% between MP3-M and Blue Phantom at 6.1 cm depth. Lateral profiles agreed between tanks within 0.5% in the central 80% of the field. 6 MeV PDD maximum difference was 1.3% occurring at the steepest portion, where the R50 was nevertheless within 0.6 mm across tanks. Setup uncertainties estimated at ≤1 mm are presumed to have contributed some of the difference between water tank data.Conclusion: Modern water scanning systems have achieved high accuracy across vendors, but commissioning tests nevertheless reveal tank-specific dependencies. This study not only ensures confidence in the individual systems but also provides the medical physicist with an understanding of variation in water tank properties between vendors

    Commissioning and cross-comparison of four scanning water tanks

    Get PDF
    Purpose: Water scanning systems are commonly used for data collection to characterize dosimetric properties of photon and electron beams, and the commissioning of such systems has been previously described. The aim in this study, however, was to investigate tank-specific dependencies as well as conduct a dosimetric comparison between four distinct water scanning systems.Methods: Four water scanning systems were studied including the PTW MP3-M Phantom Tank, the Standard Imaging DoseView 3D, the IBA Blue Phantom, and the Sun Nuclear 3D Scanner. Mechanical accuracy and reproducibility was investigated by driving the chamber holder to nominal positions relative to a zero point and using a leveled caliper with 30 cm range to measure the actual position. Dosimetric measurements were also performed not only to compare percent-depth-dose (PDD) curves and profiles between tanks but also to assess dependencies such as directionality, scanning speed, and reproducibility for each tank individually. A PTW Semiflex 31010 ionization chamber with a sensitive volume of 0.125 cc was used at a Varian Clinac 2300 linear accelerator.Results: Mechanical precision was ensured to within 0.1 mm with the standard deviation (SD) of reproducibility &lt;0.1 mm for measurements made with calipers. Dependencies on scanning direction and speed are presented. 6 MV PDDs between tanks agreed to within 0.6% relative to an averaged PDD beyond dmax and within 2.5% in the build-up region. Specifically, the maximum difference was 1.0% between MP3-M and Blue Phantom at 6.1 cm depth. Lateral profiles agreed between tanks within 0.5% in the central 80% of the field. 6 MeV PDD maximum difference was 1.3% occurring at the steepest portion, where the R50 was nevertheless within 0.6 mm across tanks. Setup uncertainties estimated at ≤1 mm are presumed to have contributed some of the difference between water tank data.Conclusion: Modern water scanning systems have achieved high accuracy across vendors, but commissioning tests nevertheless reveal tank-specific dependencies. This study not only ensures confidence in the individual systems but also provides the medical physicist with an understanding of variation in water tank properties between vendors.</p

    Deformable image and dose registration evaluation using two commercial programs

    Get PDF
    Purpose: To evaluate the daily dose delivered to the patients using daily imaging.Methods: Thirty (n = 30) patients that were previously treated in our clinic (10 prostate, 10 SBRT lung and 10 abdomen) were used in this study. The patients’ plans were optimized and calculated using the Pinnacle treatment planning system. The daily CBCT scans were retrieved and imported into the Velocity and RayStation software along with the corresponding planning CTs, structure sets and 3D dose distributions. In addition, the critical structures were contoured on each CBCT by the prescribing physician and were included in the evaluation of the daily delivered dose. After registering each CBCT scan to the planning CT using deformable registration, the dose volume histograms (DVH) for the organs at risk (OAR) and the respective planning target volumes (PTV) were calculated in Velocity and Raystation.Results: For the prostate patients, we observed daily volume changes for the bladder, rectum and sigmoid. The DVH analysis for those patients showed variation in the sparing of the critical structures while PTV coverage showed no significant changes. Similar results were observed for patients with abdominal targets. In contrast, in SBRT lung patients, the DVH for the critical structures and the PTV were comparable to those from the initial treatment plan. By using daily CBCT dose reconstruction, we proved PTV coverage for prostate and abdominal targets is adequate. However, there is significant dosimetric change for the OAR. These changes were random with no apparent trending. For lung SBRT patients, the delivered daily dose for both PTV and OAR is comparable to the planned dose with no significant differences.Conclusion: Daily tracking of the delivered dose is feasible. The doses can be evaluated only if the OARs have been segmented taken into account any daily anatomical changes and not by deformation of the structures along.-------------------Cite this article as: Tuohy R, Bosse C, Mavroidis P, Shi Z, Crownover R, Papanikolaou N, Stathakis S. Deformable image and dose registration evaluation using two commercial programs. Int J Cancer Ther Oncol 2014; 2(2):020242. DOI: 10.14319/ijcto.0202.4

    Mathematical analysis of approximate biological effective dose (BED) calculation for multi-phase radiotherapy treatment plans

    Get PDF
    Purpose: There is growing interest about biological effective dose (BED) and its application in treatment plan evaluation due to its stronger correlation with treatment outcome. An approximate biological effective dose (BEDA) equation was introduced in order to simplify BED calculations by treatment planning systems in multi-phase treatments. The purpose of this work is to reveal its mathematical properties relative to the true, multi-phase BED (BEDT) equation.Methods: The BEDT equation was derived and used to reveal the mathematical properties of BEDA. MATLAB (MathWorks, Natick, MA) was used to simulate and analyze common and extreme clinical multi-phase cases. In those cases, percent error and Bland-Altman analysis were used to study the significance of the inaccuracies of BEDA for different combinations of total doses, numbers of fractions, doses per fractions and α/β values. All the calculations were performed on a voxel-basis in order to study how dose distributions would affect the accuracy of BEDA.Results: When the voxel dose-per-fractions (DPF) delivered by both phases are equal, BEDA and BEDT are equal (0% error). In heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the imprecision of BEDA is greater. It was shown that as the α/β ratio increased the accuracy of BEDA would improve. Examining twenty-four cases, it was shown that the range of DPF ratios for 3% Perror varied from 0.32 to 7.50Gy, whereas for Perror of 1% the range varied from 0.50 to 2.96Gy.Conclusion: The DPF between the different phases should be equal in order to render BEDA accurate. OARs typically receive heterogeneous dose distributions hence the probability of equal DPFs is low. Consequently, the BEDA equation should only be used for targets or OARs that receive uniform or very similar dose distributions by the different treatment phases.---------------------------Cite this article as: Kauweloa KI, Gutierrez AN, Bergamo A, Stathakis S, Papaniko-laou N, Mavroidis P. Mathematical analysis of approximate biological effective dose (BED) calculation for multi-phase radiotherapy treatment plans. Int J Cancer Ther Oncol 2014; 2(2):020226. DOI: 10.14319/ijcto.0202.2

    Evaluation of the generalized gamma as a tool for treatment planning optimization

    Get PDF
    Purpose: The aim of that work is to study the theoretical behavior and merits of the Generalized Gamma (generalized dose response gradient) as well as to investigate the usefulness of this concept in practical radiobiological treatment planning.Methods: In this study, the treatment planning system RayStation 1.9 (Raysearch Laboratories AB, Stockholm, Sweden) was used. Furthermore, radiobiological models that provide the tumor control probability (TCP), normal tissue complication probability (NTCP), complication-free tumor control probability (P+) and the Generalized Gamma were employed. The Generalized Gammas of TCP and NTCP, respectively were calculated for given heterogeneous dose distributions to different organs in order to verify the TCP and NTCP computations of the treatment planning system. In this process, a treatment plan was created, where the target and the organs at risk were included in the same ROI in order to check the validity of the system regarding the objective function P+ and the Generalized Gamma. Subsequently, six additional treatment plans were created with the target organ and the organs at risk placed in the same or different ROIs. In these plans, the mean dose was increased in order to investigate the behavior of dose change on tissue response and on Generalized Gamma before and after the change in dose. By theoretically calculating these quantities, the agreement of different theoretical expressions compared to the values that the treatment planning system provides could be evaluated. Finally, the relative error between the real and approximate response values using the Poisson and the Probit models, for the case of having a target organ consisting of two compartments in a parallel architecture and with the same number of clonogens could be investigated and quantified. Results: The computations of the RayStation regarding the values of the Generalized Gamma and the objective function (P+) were verified by using an independent software. Furthermore, it was proved that after a small change in dose, the organ that is being affected most is the organ with the highest Generalized Gamma. Apart from that, the validity of the theoretical expressions that describe the change in response and the associated Generalized Gamma was verified but only for the case of small change in dose. Especially for the case of 50% TCP and NTCP, the theoretical values (ΔPapprox.) and those calculated by the RayStation show close agreement, which proves the high importance of the D50 parameter in specifying clinical response levels. Finally, the presented findings show that the behavior of ΔPapprox. looks sensible because, for both of the models that were used (Poisson and Probit), it significantly approaches the real ΔP around the region of 37% and 50% response. The present study managed to evaluate the mathematical expression of Generalized Gamma for the case of non-uniform dose delivery and the accuracy of the RayStation to calculate its values for different organs. Conclusion: A very important finding of this work is the establishment of the usefulness and clinical relevance of Generalized Gamma. That is because it gives the planner the opportunity to precisely determine which organ will be affected most after a small increase in dose and as a result an optimal treatment plan regarding tumor control and normal tissue complications can be found

    A Monte Carlo model for independent dose verification in IMRT and VMAT for the Varian Novalis TX with high definition MLC

    Get PDF
    Purpose: With intensity modulated radiation therapy (IMRT), the physician can prescribe, design and deliver optimized treatment plans that target the tumor and spare adjacent critical structures. The increased conformity of such plans often comes at the expenses of adding significant complexity to the delivery of the treatment. With volumetrically modulated arc therapy (VMAT), in addition to the modulation of the intensity of the radiation beam, other mechanical parameters such as gantry speed and dose rate are varied during treatment delivery. It is therefore imperative that we develop comprehensive and accurate methods to validate such complex delivery techniques prior to the commencement of the patient’s treatment. Methods: In this study, a Monte Carlo simulation was performed for the high definition multileaf collimator (HD-MLC) of a Varian Novalis TX linac. Our simulation is based on the MCSIM code and provides a comprehensive model of the linac head. After validating the model in reference geometries, treatment plans for different anatomical sites were simulated and compared against the treatment planning system (TPS) dose calculations. All simulations were performed in a cylindrical water phantom as opposed to the patient anatomy, to remove any complexities associated with density effects. Finally, a comparison through gamma analysis of dose plane between the simulation, the TPS and the measurements from the Matrixx array (IBA) was conducted to verify the accuracy of our model against both the measurements and the TPS. Results: Gamma analysis of ten IMRT and ten VMAT cases for different anatomical sites was performed, using a 3%/3 mm passing criterion. The average passing rates were 97.5% and 94.3% for the IMRT and the VMAT plans respectively when comparing the MCSIM and TPS dose calculations. Conclusion: In the present work a Monte Carlo model of a Novalis TX linac which has been tested and benchmarked to produce phase-space files for the treatment head of the linac was used to produce a input phase-space to calculated dose deposition phenomena in different geometries for IMRT and VMAT treatment modalities. The control points defined for the MLC were replaced by blocks with the same characteristics and materials of the linac MLC to speed up the simulation time. With this technique a simulation of a typical IMRT case can be performed with a 10 computer cluster in about 1.02 hours in average. If the number of computer used is increased the computing time can be reduced even more which make our model suitable for clinical use as a second check method to compare the TPS dose calculated. Our results showed that for IMRT and VMAT deliveries with a HD-MLC, there is an average of 95.9% of the points have a gamma index less than 1 with our chosen criterion between our Monte Carlo simulations and the corresponding measurements and TPS calculations in a cylindrical water equivalent phantom. This Monte Carlo code can be used as pre-treatment, independent dose calculation verification for IMRT and VMAT deliveries

    Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group.

    Get PDF
    This report describes the current state of flattening filter-free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high-dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out-of-field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity-modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical applications are provided. Several of the areas in which future research and development are needed are also indicated
    corecore