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This report describes the current state of flattening filter-free (FFF) radiotherapy 
beams implemented on conventional linear accelerators, and is aimed primarily 
at practicing medical physicists. The Therapy Emerging Technology Assessment 
Work Group of the American Association of Physicists in Medicine (AAPM) 
formed a writing group to assess FFF technology. The published literature on FFF 
technology was reviewed, along with technical specifications provided by vendors. 
Based on this information, supplemented by the clinical experience of the group 
members, consensus guidelines and recommendations for implementation of FFF 
technology were developed. Areas in need of further investigation were identi-
fied. Removing the flattening filter increases beam intensity, especially near the 
central axis. Increased intensity reduces treatment time, especially for high-dose 
stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flat-
tening filter reduces out-of-field dose and improves beam modeling accuracy. FFF 
beams are advantageous for small field (e.g., SRS) treatments and are appropriate 
for intensity-modulated radiotherapy (IMRT). For conventional 3D radiotherapy 
of large targets, FFF beams may be disadvantageous compared to flattened beams 
because of the heterogeneity of FFF beam across the target (unless modulation is 
employed). For any application, the nonflat beam characteristics and substantially 
higher dose rates require consideration during the commissioning and quality 
assurance processes relative to flattened beams, and the appropriate clinical use 
of the technology needs to be identified. Consideration also needs to be given to 
these unique characteristics when undertaking facility planning. Several areas still 
warrant further research and development. Recommendations pertinent to FFF 
technology, including acceptance testing, commissioning, quality assurance, radia-
tion safety, and facility planning, are presented. Examples of clinical applications 
are provided. Several of the areas in which future research and development are 
needed are also indicated. 

PACS number: 87.53.-j, 87.53.Bn, 87.53.Ly, 87.55.-x, 87.55.N-, 87.56.bc 
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I.	 INTRODUCTION

Photon beams are generated by bombarding a high-Z target with a high-energy electron beam. 
The resultant megavoltage bremsstrahlung beams present a bell-shape profile with the high-
est intensity at the center. In conventional linear accelerators, uniform intensity across the 
treatment field (at least nominally) is obtained by placement of a flattening filter in the beam. 
However, modern radiotherapy practice now routinely utilizes fluence modifying techniques, 
such as intensity-modulated radiation therapy (IMRT), to create more conformal dose distribu-
tions. In such cases, the flattening filter becomes unnecessary in the beam production process. 
Additionally, for small fields (such as are used in stereotactic procedures), even without the 
flattening filter the treatment field is nearly flat over the central few centimeters, again rendering 
the flattening filter unnecessary; furthermore, as neither patients nor targets are flat, flattening 
filter-free (FFF) fields may be useful for moderate or even large targets.

Clinical use of FFF beams was initially driven by the attempt to reduce the long delivery time 
required for SRS treatments, as removing the flattening filter increases the dose rate by a factor 
of 2–4. The increased intensity associated with FFF beams is particularly useful for small field 
stereotactic radiosurgery (SRS) and/or stereotactic body radiation therapy (SBRT) procedures,(1) 
but may be useful for a wide range of fields and treatments.(2,3) Other early clinical applications 
were also reported using FFF technology to improve the delivery efficiency,(4-6) evolving into 
studies of stereotactic body radiation therapy (SBRT),(7-10) all of which demonstrated positive 
results. FFF technology has been in clinical use for many years, starting with the Scanditronix 
racetrack microtron MM50.(11,12) More modern linear accelerators that omit the flattening filter 
include the helical TomoTherapy machine, as well as CyberKnife system.(13-15) It is, therefore, 
no surprise that mainstream linear accelerators now include this as standard product offering.

FFF beams have many distinct characteristics compared to conventional photon beams. 
They have a different beam profile and higher dose rate, but also a different photon energy 
spectrum and different head-scatter properties. Consequently, there are unique features to FFF 
beams, including properties of the beams (sharper penumbra, less head scatter, and less out-
of-field dose), dosimeter response (increased ion recombination), vault shielding, and possibly 
even radiobiology. At present, hundreds of medical linear accelerators with FFF functionality 
have been installed. However, general guidelines regarding the acceptance, commissioning, 
and quality assurance have not been compiled. This document provides a technical overview 
of current FFF technology, and offers guidelines and recommendations for dose-calculation, 
acceptance testing, commissioning, quality assurance, facility planning, radiation safety, and 
clinical implementation. 

 
II.	 TECHNICAL ISSUES 

A. 	 Machine Overview
There are multiple commercial implementations of FFF technology now available and a review 
of the treatment head physics including monitor chamber and steering effects, X-ray spectra, 
photon and electron characteristics, and neutron production has recently been published.(16,17) 
The following sections supplement this work by providing technical summaries of commercial 
systems available at the time of this report.
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A.1  Varian
Varian Medical Systems offers 6 and 10 MV FFF beams on the TrueBeam linear accelerator, in 
addition to the conventional flattened beams. Varian refers to the FFF beams as “High Intensity 
Mode.” Beam characteristics are presented in Table 1. In their implementation, the same electron 
beam is used to create both flattened and FFF beams of the same nominal energy. Therefore, 
electron energy at the target is the same and removal of the flattening filter increases output, but 
also reduces the penetrative quality of the photon beam due to the reduced beam hardening.

Both the 6 and 10 MV FFF beams use a tungsten target. On FFF machines, the carousel that 
holds the flattening filters also has a position containing a 0.8 mm thick brass plate that is used 
for the FFF beams in place of a flattening filter to filter electrons and low-energy photons.(18) 

The monitor chamber is comprised of two separately sealed, positive-pressure chambers. 
Whereas the traditional C-series linac had four sectors per chamber, the TrueBeam accelerator 
includes a fifth, central, sector that evaluates coarse flatness. The primary chamber monitors 
dose rate and radial profile shape. The secondary chamber monitors dose rate and transverse 
profile shape. The beam monitoring system digitizes and counts every beam pulse and gener-
ates corrective feedback to beam steering servo systems to control the profile shape. For FFF 
beams, symmetry is actively controlled by the beam steering systems.

A.2  Elekta
Elekta offers 6 and 10 MV FFF beams on the Versa HD linear accelerator, in addition to the 
conventional flattened beams. Elekta refers to the FFF beams as “High Dose Rate Mode” 
(characteristics presented in Table 1).

In contrast to the Varian linear accelerator, the same electron beam is not used to create the 
FFF and corresponding flattened beam. Each of the beams on the Elekta family of linacs is 
defined by its own independent set of parameter values, referred to as its ‘Energy Set’. Each 
Energy Set includes the radio frequency and gun settings that define the electron beam energy 
and also the dosimetry calibration settings. Each of the FFF energies has its own independent 
Energy Set different from any flattened beam. This allows the penetrative quality of the FFF 
beams to be restored to the nominal value for that energy. 

In the linac head, the bremsstrahlung beam is filtered with a stainless steel disc instead of the 
usual flattening filter. In addition to removing low-energy photons, this also produces electrons 

Table 1.  Characteristics of commercially available FFF beams. All dosimetric quantities are given for a 10 × 10 cm2 
field at 100 cm SSD unless otherwise noted and were provided by the manufacturers. 

	 Varian	 Elekta	 Siemens

	 Nominal energy (MV)	 6 FFF	 10 FFF	 6 FFF	 10 FFF	 7 UF	 11 UF	 14 UF	 17 UF
	Bremsstrahlung target material	 Tungsten	 Tungsten	 Tungsten
	 Approximate mean electron  
	 energy on target (MeV)	 6.2	 10.5	 7	 10.5	 8.9	 14.4	 16.4	 18.3

	 Filtration	 0.8 mm Brass	 2mm Stainless steel	 1.27 mm Al
	 dmax (cm)	 1.5	 2.3	 1.7	 2.4	 1.9	 2.7	 3.0	 3.3
	 Dose at 10 cm depth (%)	 64.2	 71.7	 67.5	 73.0	 68.5	 74.5	 76.5	 78.0
	 Dose 10 cm from central axis  
	(40×40 cm2 field), at dmax (%)	 77	 60	 70a	 59a	 68	 57	 -	 -

	 Maximum dose rate on beam  
	 axis at dmax (cGy/min)	 1400	 2400	 1400	 2200	 2000	 2000	 2000	 2000

	 Dose per pulse on beam axis  
	 at dmax (cGy/pulse)	 0.08	 0.13	 0.06	 0.09/0.14b	 0.13	 0.13	 0.13	 0.13

a	 Defined at 90 cm SSD, 10 cm depth
b	Feedback/nonfeedback machine.



15    Xiao et al.: Flattening filter-free accelerators	 15

Journal of Applied Clinical Medical Physics, Vol. 16, No. 3, 2015

that provide signal to the ion chambers in the treatment head that measure dose and other beam 
parameters. Two ion chambers provide independent measurements of dose, and a third contains 
a set of six collection plates arranged geometrically to provide uniformity signals for use by 
the beam control servo system that ensures beam stability. 

A.3  Siemens
Although no longer in the radiotherapy market, many Siemens FFF machines are in clinical use, 
and so their properties are discussed here. Siemens offers a high-intensity unflat (UF) beam in four 
photon energies: 7 UF, 11 UF, 14 UF, and 17 UF, in addition to the conventional flattened beams. 
At the time of this report, Siemens is the only manufacturer that offers a high-energy (> 10 MV) 
FFF beam. Available properties of the Siemens FFF beams are presented in Table 1. 

Similar to the Elekta linac, the electron energy at the target for the FFF beams is different 
from the corresponding flattened beam; the 7 UF beam has a different accelerating potential 
than the flattened 6 MV beam (selected to result in a similar depth-dose curve). Nomenclature 
for the FFF energies was also selected in an effort to minimize the accidental use of an FFF 
beam in place of a flattened beam. For example, 11 MV UF would be distinct from 10 MV 
flattened, although the two beams may have very similar radiological characteristics on the 
central beam axis. 

Two sealed dose chambers, named Monitor_1 and Monitor_2 perform photon dosimetry 
in Siemens linacs. The function of dose Monitor_1 is to measure each dose pulse. Monitor_2 
consists of five chambers that are used for measuring each dose pulse (redundant to Monitor_1) 
and monitoring off-axis characteristics.(17)

B. 	 Acceptance testing
Acceptance testing for a linear accelerator without a flattening filter is similar to that of a 
conventional linear accelerator. The guidelines described in AAPM TG-45(19) and TG-142(20) 
reports should be followed, with the sole exception relating to the testing of those properties 
related to the beam flatness. Instead of measuring the flatness, the shape of the beam profile 
must be verified to ensure that it meets the machine performance specifications provided by 
the manufacturer. The details of these specifications, such as the number and location of profile 
points to be checked, are dependent on the agreement between the hospital and manufacturer 
at the time of purchase; however, specifications for beam profile shape should not vary sub-
stantially between flattened and FFF beams. Beam shape and symmetry measurements will 
typically be obtained using either a scanning system in water or film.(19) Because of the higher 
dose per pulse of FFF beams, dose rate dependent measurement devices should be evaluated 
for possible effects, as described in sections C.1 and C.2.

C. 	 Commissioning

C.1  Calibration
A standard calibration protocol, such as TG-51(21) or TRS-398,(22) should be followed. With 
the removal of the flattening filter, four special considerations, detailed below, exist due to dif-
ferences in the beam quality, dose per pulse, and profile shape. These issues are also addressed 
in the AAPM Working Group on TG-51 report.(23) 

First, for a Varian implementation of the FFF beams, the softer photon spectrum results in a 
different beam quality conversion factor, kQ, than was used for flattened beams. More generally, 
because of the different photon spectrum for any FFF beam, the beam-quality specifier for a 
FFF beam, as compared with a flattened beam, has a different relationship with Spencer-Attix 
stopping-power ratios.(24) However, the standard relationship between %dd(10)x and the ratio 
of (L/ρ)air to (L/ρ)water, which is used in the TG–51 protocol to calculate the quality conversion 
factor kQ, is acceptable for beams with or without a flattening filter with a maximum error of 
0.4%. That is, kQ may be slightly different for FFF beams, but can be determined in the same 
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manner as was done for flattened beams. It is also important to note that the validity of this 
method to determine kQ only applies to chambers with low-Z or aluminum electrodes; cham-
bers with high-Z electrodes should not be used for reference dosimetry in FFF beams.(23,25)  
As an alternative approach to specifying beam quality, studies have also evaluated using 
TPR10/20.(26) It was found that, if TPR10/20 is used, there are two different relationships 
between the ratio of (L/ρ)air to (L/ρ)water which differ by 0.4%–1%. When using TPR10/20 in a 
beam without a flattening filter, it is necessary to subtract 0.5% from the value of kQ for a given 
value of TPR10/20.(27) Due to this complication, this method should be used with caution.

Second, it is recommended in TG-51(21) that, when determining kQ at high energies (about 
10 MV and above), 1 mm of lead be used to reduce electron contamination at dmax to a negligible 
level. It is unclear if FFF beams at 10 MV require the use of lead. The prudent and appropriate 
approach is to use lead unless it has been verified to be unnecessary for a given beam (that is, 
the same value of kQ is produced).

Third, the elevated dose per pulse of FFF beams results in increased ion recombination and 
therefore a larger correction factor, Pion.

(28,29) However, it is likely that Pion can be calculated 
using the same two-voltage formalism that is presented in TG-51 for flattened beams — this 
approach was found to be accurate within 0.3% for common Farmer-type chambers, and offers 
comparable accuracy to that seen for flattened beams.(28) However, per the AAPM Working 
Group on TG-51 report, the suitability of the two-voltage technique should be verified for 
all reference dosimetry scenarios, including FFF (and flattened) beams.(23) This can be done 
through the use of Jaffe plots (1/current (or charge) vs. 1/voltage) to determine the relationship 
between the ionization chamber bias and signal lost to recombination and, therefore, the validity 
of the two-voltage Pion. The correction factors of several commonly used ionization chambers 
for Varian 6 MV and 10 MV FFF beams are shown in Table 2. Of note, Pion is determined 
primarily by the instantaneous dose rate (the dose per pulse), which usually doesn’t change 
with changes to the nominal dose rate of the linac. Therefore, changing the nominal dose rate 
cannot be used to verify or evaluate the dose-rate dependence of a dosimeter or its suitability 
in the high-dose-rate environment of an FFF beam.

Fourth, because the radiation profile is peaked on the central axis, large volume Farmer-type 
ion chambers placed on the central axis will experience some partial volume averaging, and 
therefore underestimate the dose on the central axis. This effect was examined for Varian 6 and 
10 MV FFF beams based on film-measured profiles in Kry et al.(28) Based on the dose falloff 
away from the central axis and the dimensions of Farmer-type chambers, a partial volume effect 
was estimated to be 0.2% for both energies — that is, the ion chamber measurement would 
be 0.2% less than the true dose on central axis. This effect would be slightly larger if the ion 
chamber was not centered in the radiation field or if the beam was not properly steered. If the 
chamber was offset 5 mm from isocenter along the direction of the chamber (maximizing the 
size of the effect), the dose could be underestimated by up to 0.3% relative to the central-axis 
measurements (for a 10 MV FFF beam).(28) Partial volume effects and setup sensitivity would 
also be more pronounced at higher energies, at penumbra regions, or at regions of the profile 
with sharper dose falloff. Reasonable care should be used when centering the ion chamber. The 
AAPM Working Group on TG-51 report recommends correction of the partial volume effect and/
or the use of chambers with a short collecting volume to minimize partial volume effects.(23)

Table 2.  Examples of measured Pion values at 300 V for Varian flattening filter-free (FFF) beams at 10 cm depth in 
water and at dmax with three different ion chambers.(28)

	 6 MV FFF	 10 MV FFF

	 Chamber	 10 cm	 dmax	 10 cm	 dmax
	 Exradin A-12	 1.006	 1.009	 1.010	 1.014
	PTW TN30013	 1.005	 1.008	 1.011	 1.013
	 NEL 2571	 1.008	 1.013	 1.015	 1.018
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C.2  Profiles, depth doses, and other dosimetric properties
Commissioning and measurements of dosimetric properties should follow the general recom-
mendations from TG 106,(30) which contains detailed specification as to the scanning and non-
scanning data measurement requirements. A number of reports have descriptions of successful 
commissioning of FFF beams for various energies.(2,3,31-33) 

For scanning measurements with an ion chamber, the variation in dose per pulse with 
depth and across the beam profile results in Pion varying with off-axis position and depth (e.g., 
Table 2). The magnitude of the effect is dependent on variations in dose per pulse, as well as 
the chamber design (particularly the electrode spacing). While recombination, and therefore 
variations in recombination, will often be smaller for smaller scanning chambers, this may not 
always be the case. Changes in Pion would be expected to be less than 1% for many scanning 
chambers based on Table 2 data and other investigations.(34) However, for a given model of 
scanning chamber, the range of ion recombination should be measured — between dmax on the 
central axis (maximum dose per pulse) and at a relatively deep depth far off-axis (minimum 
dose per pulse). Clinical judgment should then be used to determine if the variation in Pion is 
acceptable. If it is not acceptable, a different chamber or dosimeter should be used. For flat-
tened beams, Pion also changes as a function of depth (or with wedges, for example). However, 
changes in Pion are not generally accounted for because Pion is very close to 1 and therefore 
variations in Pion are very small. For FFF beams Pion is larger, and therefore variations in Pion 
across the treatment field will be larger.

Dose-rate effects may be relevant to other dosimeters, as well, and careful attention should 
be paid to any dose-rate-dependent device. 

The commissioning scans of FFF beams will have different characteristics than are seen 
with flattened beams. The type and magnitude of these differences will depend on whether 
the energy of the electrons hitting the bremsstrahlung target has been increased (to restore the 
PDD), as with Elekta linacs, or not, as with Varian linacs. It should be noted that restoration of 
the PDD does not equate to equivalence of the underlying spectra and, while other properties 
may often be similar, they should not be expected to be identical. Below are presented major 
characteristics and the results that should be expected for FFF beams.

The PDD will be more shallow for FFF beams because the photon energy spectra are softer, 
unless the PDD has been restored through increasing the electron energy.(2,35) However, for 
all FFF beams, the PDD has minimal dependence on off-axis position and, therefore, while 
the beam profile will show a bell-shape, the shape of the profile will change only minimally 
with depth (off-axis factors are minimally depth dependent).(2,35,36) In flattened beams, profile 
shape varies with depth primarily because of spatially variant beam-hardening, which does not 
occur for FFF beams.

Machine output measurements show less variation with field size for FFF beams than for 
conventional flattened beams. This was demonstrated by Vassiliev et al.(2) who measured Sc,p 
for a range of field sizes. The decreased variability in output is attributed to decreased head 
scatter because the absence of the flattening filter removes a major scatter source.(37) Naturally, 
phantom scatter factors are also different than for flattened beams.(32)

The penumbra for FFF beams has been found to be sharper than for flattened beams (par-
ticularly for small fields), although this is most clearly the case when the energy of the FFF 
beam was not raised (to restore the PDD).(32,38) When the energy was raised (as for Siemens 
and Elekta linacs), the FFF penumbra has been found to be comparable to, or broader than, the 
penumbra for flattened beams.(32,32) In general however, these differences are small.

When the energy has not been restored, the softer photon spectrum results in less MLC leaf 
transmission.(32,38)

For a Varian linac, skin dose for FFF beams has been found to be modestly higher compared 
to flattened beams, as measured with a parallel plate ionization chamber.(23,39) For example, the 
dose at 1 mm depth relative to Dmax was found to be 53% for a flattened 6 MV beam, but 61% 
for an FFF beam. Skin dose varies with field size; because there is less low-energy contamination 
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from head scatter, skin dose from FFF beams increases more slowly than for FF beams as field 
size increases. Consequently, skin doses from FFF beams may be comparable or even lower 
than for flattened beams for large fields.(3,32) Increasing the beam energy to restore the flattened 
PDD mitigates the increase in skin dose.(32) In general however, further study of surface doses 
is warranted to more fully understand the impact of treatment parameters, the skin dose associ-
ated with clinical treatment conditions, and the reliability of the TPS in predicting skin dose in 
the plans for which FFF might be used. While several studies in the literature have estimated 
the skin dose, this has typically been at a depth of 3 mm, which generates substantially differ-
ent doses than at the actual depth of the skin target cells (≤ 0.1 mm(40,41)). Because skin dose 
measurements are difficult to make and treatment planning systems don’t model this region 
accurately, we therefore recommend choosing beam arrangements that distribute the entrance 
dose over multiple ports, as is always good clinical practice. 

Outside the treatment field, FFF beams generally produce lower dose.(1,32,42-44) Leakage radia-
tion and collimator scatter are substantially reduced. However, patient scatter is not decreased 
in the presence of a softer primary photon beam.(42) Doses outside the treatment field are most 
reduced in FFF mode for smaller or highly modulated fields, such as stereotactic treatments, as 
head leakage is relatively important for these treatments.(1,32) When the energy of the electrons 
striking the target is increased (to restore the PDD as in the Elekta and Siemens implementa-
tions), the out-of-field dose is lower than when the electron energy is left unchanged.(44)

C.3  End-to-end testing
Task Group 142(20) recommends end-to-end testing anytime new procedures are introduced. 
End-to-end testing helps ensure the safe operation of the entire system, including the treatment 
planning system, the R&V system, and the delivery system. For flattening filter-free beams, 
areas of concern include accurate modeling of the flattening filter-free beam by the TPS and 
proper transfer of the treatment plan to the delivery system, particularly the novel feature of 
the FFF beam designation. The current DICOM standard does not explicitly handle FFF beams 
and so vendors have adopted different schemes for encoding the FFF property. An end-to-end 
test, comprised of a CT scan of a phantom, transfer of the CT images to the TPS, generation 
of a clinical plan, transfer of the plan to the R&V system, and delivery of the plan, is therefore 
critical. The end-to-end test should follow the clinical process completely, handling the phantom 
in the same manner as a patient. This should also examine mixing conventional and FFF beams. 
At a minimum, point measurements should be made to verify the correct dose. An excellent 
resource for IMRT and VMAT end-to-end testing is the report of Task Group 119.(45) 

D. 	 Periodic quality assurance
Development of a periodic quality assurance program is ultimately the responsibility of the 
site physicist, but must conform to applicable regulations, and should generally follow profes-
sional guidance documents, such as Task Group 142,(20) although other established standards 
may also be acceptable.

Most QA procedures for FFF beams and linear accelerators are consistent with the QA that 
should be performed for traditional flattened beams. The vast majority of mechanical, safety, 
and even dosimetric properties of FFF beams and delivery systems are the same as for flattened 
beams, and the QA program can therefore largely follow traditional QA. Regarding the shape of 
the beam profile, TG-142(20) can be followed directly, establishing the “baseline” beam profile 
shape during commissioning. The profile shape can then be evaluated against this baseline on 
a point-by-point or area comparison basis (as is done for flattened beams), or by evaluating 
the slope of the profiles.(46) However it is assessed, and similar to other FFF beams such as 
TomoTherapy,(47) the consistency of the profile should be verified monthly (although more 
frequently may be easily achievable with some daily QA devices). The shape of the profile 
should also be compared to the treatment planning system data annually.
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E. 	 Treatment planning 

E.1  Planning systems
Modern treatment planning systems employ model-based algorithms for dose calculation. 
Model-based algorithms should be able to accommodate FFF beams; indeed the radially uniform 
FFF photon energy spectrum has been found to make modeling of such beams more accurate 
than the modeling of flattened beams.(48) However, the specific software implementation must 
be designed to handle FFF beams, and the TPS vendor’s instructions must specify the necessary 
beam data. Various commercial treatment planning systems are reported to have the capability 
to accurately handle FFF beams, including the Eclipse analytical anisotropic algorithm (Varian 
Medical Systems),(49) Eclipse Acuros XB (Varian Medical Systems),(49) Pinnacle collapsed cone 
convolution superposition (Phillips),(31) CMS XiO (Elekta),(31) Oncentra MasterPlan enhanced 
collapsed cone convolution (Elekta),(48) Monaco Monte Carlo (Elekta),(48) and Prowess Panther 
(Prowess Inc.).(50) Other vendors should be consulted to determine the status of their support 
for FFF beams. The commissioning of FFF beams for treatment planning systems should fol-
low standard guidelines.(45,51)

E.2  Planning, optimization
For conventional treatment planning or forward treatment planning, the use of FFF beams may 
be more challenging than using conventional flattened beams because of the nonuniform intensity 
across the field. However, this difficulty is mitigated for small fields as intensity variations are 
minimal over the central 1–2 centimeters of the treatment field.(2) In general, neither patients 
nor tumors are flat; target coverage with FFF beams is readily achievable for small targets and 
may be achievable for larger targets, as well. Unmodulated FFF beams have been found to be 
suitable for small-field procedures, such as SRS/SBRT, using 3D CRT.(1,52) FFF modalities 
should also be suitable for forward planned IMRT (e.g., field-in-field technique); however, as 
field size increases, forward planning may become more challenging. In general, FFF beams 
are not used for large, unmodulated fields.

Computer optimization, as used in inverse planning, removes the challenges of the nonuni-
form fluence. During IMRT planning, a typical broad beam is divided into many small beamlets 
to provide sufficient freedom of beam intensity variations required for IMRT. FFF beams have 
inherent intensity variations, but these are directly incorporated into the IMRT plan optimization. 
Several authors report that IMRT plan qualities are comparable when based on either flattened 
or FFF beams.(31,53,54) FFF beams may sometimes produce slightly better target conformality 
and/or critical structure sparing,(53) but mixed results have also been reported across different 
disease sites and with different energies.(55) Consistently though, the differences have been 
found to be small and likely not clinically significant. Other treatment plan characteristics also 
change with the use of FFF beams. With FFF beams, it was found that more segments were 
required compared to IMRT plans with flattened beams for nonconcave tumor volumes and for 
large tumor volumes, although for small tumor volumes or highly concave tumor shapes, the 
number of segments in IMRT plans with FFF versus flattened beams were similar.(54) Finally, 
FFF beams also require more monitor units to deliver treatments as, for off-axis points, less 
than 1 cGy is delivered per MU. 

It must be noted though that the specifics of 1 MU is different between flattened and FFF 
beams. One MU corresponds in both cases to the signal measured in the monitor chamber that 
corresponds to a dose of 1 cGy under reference conditions. However, for FFF beams, much less 
target current is required to produce the same signal in the monitor chamber. Correspondingly, 
less target current is required to deliver 1 MU, and less target current is required to deliver a 
course of treatment,(56) even though more MUs are required.
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III. 	 CLINICAL ISSUES

A. 	 Treatment plans and delivery
FFF beams have been implemented and evaluated for various disease sites. The main comparisons 
are based on delivery time and dosimetry. The increased dose rate allows for faster delivery, which 
may reduce the effects of patient and/or target motion, and increase patient comfort. The shortened 
delivery time will benefit some motion control techniques, such as breath-hold. Treatments of 
small-sized tumors benefit most as they have the most elevated dose rate. Dosimetrically, the 
quality of both stereotactic and IMRT treatment plans with FFF delivery is comparable to that 
using flattened beams. Dosimetric equivalence is not a surprising finding, given the long history 
of use and good performance of FFF beams in devices such as TomoTherapy.(57,58)

Studies have also typically found that IMRT treatment planning time is independent of 
whether or not a flattening filter is in place.(59,60) 

B. 	 SRS/SBRT applications
The FFF modality was first investigated by O’Brien et al.(1) for radiosurgery applications. 
More recently, and with a modern linac, Vassiliev et al.(52) assessed the feasibility of stereot-
actic radiotherapy for early stage lung cancer using FFF photon beams from a Varian Clinac. 
Flattened beam 3D CRT treatments for 10 clinical patients were replanned with FFF beams. 
This study found that dose homogeneity in the target was not significantly different between 
treatments using flattened or FFF beams (p = 0.3), and that doses to critical structures were 
comparable. The median beam-on time per field was reduced from 25 s (with the filter) to 
11 s (without the filter), increasing the feasibility of breath-hold treatments and the efficiency 
of gated treatments. On a clinical machine, Gasic et al.(55) evaluated 30 SRS/SBRT patients 
for FFF versus flattened VMAT. They similarly found negligible dosimetric differences, but a 
reduction in beam on time of 50%–75%. Prendergast et al.(8) also highlighted the substantial 
time advantage of FFF beams for stereotactic treatments with a review of 27 CNS radiosurgery 
cases treated using FFF beams. Delivered doses ranged from 12 to 30 Gy, delivered in 1 to 5 
fractions. Despite the large dose per fraction, the mean time the patient spent in the treatment 
room (from the beginning of imaging to the completion of treatment) was only 10:42 (min:s; 
range: 6:05–22:56), leading to the conclusion that single fraction and hypofractionated CNS 
SRS can be accomplished within a standard radiotherapy time slot.

On a more cautionary note, however, Ong et al.(61) found that the faster delivery may 
accentuate interplay between breathing motion and leaf motion, which may be a concern in 
hypofractionated IMRT in the thorax and abdomen.

C. 	 IMRT applications
Numerous studies have evaluated the potential for FFF beams to deliver IMRT. Fu et al.(54) first 
considered this, exploring treatment delivery time, and found that FFF plans require up to 50% 
less beam-on time than corresponding flattened beam treatments based on IMRT of the head 
and neck and prostate. This reduction was not clinically significant with 2 Gy doses, although 
it could be for larger doses per fraction.(54) Vassiliev et al.(53) compared treatment plan quality 
for flattened beam versus FFF IMRT of the prostate at 6 and 18 MV with a Varian linac and 
the Eclipse treatment planning system. Similar work was also done by Stathakis et al.(31) using 
Pinnacle’s collapsed cone convolution superposition algorithm. Both groups found comparable 
plan quality regardless of the presence of the flattening filter, with no clinically significant dif-
ference in terms of organ at risk doses and target dose homogeneity.  

Stathakis et al.(31) also evaluated head and neck, brain, and lung treatments using flattened 
versus FFF 6 MV IMRT. Again, minimal differences were seen between the beams in terms 
of target coverage, target homogeneity, or organ at risk DVH values. Spruijt et al.(62) evalu-
ated breast therapy using FFF beams and also found comparable dosimetric results between 
flattened and FFF beams.
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FFF beams can be used in conjunction with VMAT delivery techniques. Zwahlen et al.(22) 
compared VMAT plans for the prostate using 6 MV and 10 MV flattened and FFF beams. All 
four beams delivered comparable dosimetric plan quality. Treatment time was reduced by 35% 
when a single arc was used, but there was no difference in treatment time when multiple arcs 
were used (as the linac always rotated at maximum speed). However, even for the single-arc 
case, the reduction was only from 1.5 min to 1 min, reinforcing the findings of Fu et al.(54) that 
the delivery efficiency advantage for FFF beams at conventional fraction sizes is small and not 
of clinical significance. Similar results were found by Subramaniam et al.(63) who evaluated 
VMAT for the chest wall, by Nicolini et al.(64) who evaluated VMAT for the esophagus, and by 
Gasic et al.(55) who evaluated VMAT for the brain, prostate, and head and neck. All three stud-
ies found comparable dosimetric results between the flattened and FFF beams; Subramaniam  
et al.(63) found some improved sparing of organs at risk with FFF beams, Nicolini et al.(64) found 
a small increase in delivery efficiency with FFF beams, while Gasic et al.(55) found reduced 
homogeneity in the target for FFF beams in the brain and head and neck.

D. 	 Treatment delivery verification
Verification of FFF planned doses has been conducted, typically in the form of IMRT QA. 
Stathakis et al.(31) measured the dose distributions in an acrylic phantom using a PTW 0.125 cc 
ionization chamber and Kodak EDR2 film. The point dose measurements were within ± 3% 
and planar film analysis showed reasonable agreement under qualitative evaluation. Salter 
et al.(50) evaluated seven plans using the Delta4 device (ScandiDos) and found central axis 
dose agreement within 3%, and greater than 95% of pixels passing gamma (3%/3 mm). A 
multi-institutional study analyzed QA results for 224 patients treated using FFF beams, using 
both static field IMRT and arc techniques, and found them within the specified limits of 3 mm 
distance to agreement and 3% dose difference. This study was notable in that four verification 
devices were used and only small variations were found among the devices.(65) These findings 
are an important step for evaluating QA devices, as “inaccuracy of QA devices” was a substan-
tial concern in the FMEA analysis (see Table 3 in section III.G). Before use, clinical physicists 
should be thorough in evaluating the dose-rate characteristics of their QA devices, and analyze 
their passing behavior when using them for FFF beams. This can be done using a combination 
of literature review, vendor specifications, and direct measurement. 

E. 	 Limitations of FFF
The addition of FFF beams to modern linear accelerators requires additional commissioning 
and routine quality assurance. The Varian TrueBeam, for example, offers up to five clinical 
photon beams. The addition of FFF beams raises the question: “How many beams are needed to 
deliver high-quality care while not overwhelming QA resources?” Could FFF beams completely 
replace conventional flattened beams, which would then prevent a large increase in the number 
of clinical photon beams maintained? There are some limitations to this idea:

1. 	To replace conventional flattened beams with FFF beams in situations where 3D conformal 
radiation therapy is appropriate generally requires intensity modulation of the FFF beam. For 
example, wedged or gently modulated fields are often used with flattened beams for whole 
breast therapy. While FFF beams can generate acceptable plans for the whole breast,(62) beam 
modulation is generally required. At many institutions in the US, IMRT for breast would 
require a change in clinical practice with associated billing implications.

2. 	In situations where short planning time is important, such as palliative cases, flattened beam 
plans can be planned and delivered much faster than inverse plans.

3. 	There are many clinical situations, particularly in the treatment of deep tumors, where high-
energy beams are preferred to 6 or 10 MV beams. On most platforms, high-energy FFF 
beams are not available.
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4. 	Total body irradiation (TBI) treatments and other extended distance treatments, such as 
mantle fields and spinal fields for craniospinal fields, are generally made more complicated 
with FFF beams. 

These issues could be addressed in a number of ways, such as including an internal opti-
mization option to generate a flat beam profile, or the availability of high-energy FFF beams. 
However, such options are not currently available, indicating value in maintaining at least one 
conventional flattened beam.

F. 	 Practical considerations
Implementation of FFF technology requires some special considerations, including: 1) dosi-
metric understanding of the technology; 2) the effective use of the technology; 3) requirement 
of resources to implement the technology; and 4) quality assurance and safety. 

As part of commissioning, the clinical workflow of how FFF will be implemented should be 
carefully understood and documented for each step of treatment: immobilization, simulation, 
planning, localization, and delivery. 

Since FFF technology is relative new, beam characteristics need to be carefully studied prior 
to clinical use. Suitable measurement devices are available, but may require new equipment 
purchases and extra resources and training of the staff to perform these tasks. Clinical applica-
tion procedures and quality assurance procedures should be developed as early as possible. 
More importantly, the site should develop protocols about what kind of patient and treatment 
will fit the FFF technology. Since not every patient and every type of treatment will be suit-
able for FFF technology, each clinical site should develop protocols about the criteria for using 
FFF technology. For example, when it can be used for treatment techniques such as 3D CRT, 
IMRT, and VMAT, and when it can be used for treatment procedures such as SRS and SBRT.

G. 	 Safety considerations
There are unique safety considerations or “failure modes” that are particular to FFF, and there-
fore should receive additional attention to proactively examine special risks introduced by FFF, 
at least while this technology matures. While these failure modes and potential risks are not 
fully understood at this time, they include concerns with dosimetry and calibration, but also 
clinical workflow. Failure Modes and Effects Analysis (FMEA) has been suggested as a useful 
risk assessment method, with several FMEA evaluations published, and as recommended by 
TG-100.(66-72) The type and frequency of QA tests should depend on the likelihood of failure 
(O), the severity of the consequences if something goes wrong (S), and the detectability of the 
failure (D). The TG members have done the FMEA in Table 3 for new risks resulting from the 
introduction of FFF to an established clinical practice, but readers are encouraged to evalu-
ate these and other risks based on their own practice and to re-evaluate their risk estimates as 
they gain familiarity with FFF. These risks should also be put into the context of radiotherapy 
delivery with flattened beams. Ideally, risks associated with use of FFF beams would be part 
of a comprehensive departmental risk analysis, but an analysis of special potential risks of FFF 
treatments is an efficient way to get started.  

An institution’s radiotherapy program should be tailored based on such an FMEA analysis. 
For example, if skin dose is a concern, detailed measurements could be conducted or treatment 
planning policies could be enacted to ensure beams are broadly spread out over the patient. If 
QA device performance at high-dose rates is uncertain, a detailed comparison of the QA device 
to a dose-rate independent standard should be conducted. This analysis may also drive additions 
to an institution’s periodic QA program. Of note, end-to-end testing is critical to increasing 
the detectability of many problems, particularly beam type selection errors and dosimetric 
problems, such as low MU segments.
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H. 	 Facility planning

H.1  Workload estimates
Workload (total administered dose per week) could differ between flattened and FFF machines if 
the machine is used for a different application (particularly dedicated stereotactic use). However, 
for most clinical scenarios, patient throughput, and therefore workload, is unlikely to increase 
with the FFF mode because the bulk of treatment time is not beam-on time. Naturally, this will 
be determined by clinical needs and distribution of machine resources.

H.2  Vault barriers
For Varian linacs, where the energy is not restored, primary barrier thickness is 10%–20% less 
for FFF beams, compared with flattened beams, because of the decreased transmission associ-
ated with its softer photon spectrum.(73) Secondary barrier thicknesses are also 10%–20% less 
for FFF beams, compared with flattened beams. This is in part because of decreased and lower 
energy patient scattered radiation exiting the patient/phantom at most angles. Secondary barrier 
thickness is also less for FFF beams because of decreased head leakage levels. Only one-half 
(6 MV) to one-quarter (18 MV) as much head leakage occurs with FFF-based treatments as 
compared to flattened beam treatments.(73) This is particularly important for IMRT applications 
where head leakage plays a major role in vault shielding. 

For machines with energy-restored FFF beams, there is still a shielding benefit, although 
it is slightly less. Primary barrier thickness was found to be up to 8% less, while secondary 
barriers were found to be up to 11% less.(74)

Radiation survey results have confirmed lower doses associated with the FFF modality.(74,75)

H.3  Neutrons
Neutrons are generally a concern only for energies above 10 MV; currently, only Siemens linear 
accelerators have such FFF beams.

Table 3.  Example FMEA analysis of beam delivery unique to FFF. Per TG-100, a 1–10 scale is used, where Occurrence 
(O) ranges from 1 (almost impossible) to 10 (almost inevitable), Severity (S) ranges from 1 (minor annoyance) to 10 
(lethal), and Detectability (D) ranges from 1 (highly detectable) through 10 (almost impossible to detect until it causes 
patient harm). The product of O, S, and D denotes the relative risk of that failure mode. Values presented in the table 
are suggestions only, pooled from authors on this report. 

					     Risk Probability
					     Number 
	 Failure Mode	 O	 S	 D	    (product)

	 Inaccurate calibration (e.g., error in Pion)	 2	 5	 6	 60
	 Failure to account for excessive skin dose	 5	 6	 4	 120
	 Dose problems from low MU segments	 3	 4	 4	 48
	 Inaccuracy of QA devices	 4	 5	 4	 80
	 Wrong beam type selection due to confusing user  
	 interface in planning	 3	 4	 4	 48

	 Wrong beam type selection due to confusing user  
	 interface in delivery	 2	 6	 3	 36

	Wrong beam type selection due to incorrect transfer  
	 from TPS and/or R&V	 2	 6	 2	 24

	 Use of wedges or other devices for which FFF  
	 wasn’t commissioned	 2	 6	 4	 48

	 Failure to catch problem during treatment due to  
	 fast delivery	 3	 5	 5	 75

	Calibration error due to chamber placement off-axis	 2	 5	 6	 60
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The neutron spectrum is essentially constant, regardless of the presence of a flattening 
filter.(76,77) Consequently, neutron shielding requirements scale directly with fluence, which is 
substantially reduced with FFF beams.(76-78) This is primarily due to the increased efficiency 
of photon delivery — fewer photons are generated to deliver the same dose to the patient, so 
correspondingly fewer photoneutrons are created. To a much smaller degree, reduction in the 
neutron fluence also occurs because the flattening filter is no longer a source of neutrons (the 
flattening filter produces ~ 10% of neutrons in a high-energy (18–24 MV) Varian linac(76,79) 
and < 1% in a 15 MV Siemens beam(80)).

Neutron shielding values of source strength (Q) and dose equivalent (H0) for FFF beams are 
nearly 80% lower (per photon Gy at dmax for an 18 MV Varian linac).(76) In cases with beam 
modulation, the neutron source strength and dose equivalent must be scaled by the modula-
tion, which for clinical treatments corresponds to an approximately 70% reduction in neutron 
fluence and dose equivalent.(78) 

In addition to the decreased shielding burden, the decreased neutron fluence also corresponds 
to a decreased personnel dose through room activation.(75)

In short, neutrons are at most a minimal issue, even for high-energy FFF beams.

H.4  Recommendations: Facility planning and radiation safety
From a facility planning and radiation safety perspective, FFF beams are superior to flat-
tened ones in that there is a smaller shielding burden for the FFF mode. However, current 
FFF beams are offered in conjunction with flattened beams, requiring shielding of those flat-
tened beams, as well. Therefore, unless the FFF mode is intended to be predominantly used, 
shielding for the traditional flattened beams is likely optimal, offering prudent shielding for 
all machine applications.

 
IV. 	 THEORETICAL ISSUES

A. 	 Radiobiological aspects
The dose-rate differences between treatments delivered by conventional beams (~ 3–6 Gy/min) 
and by FFF ( ~ 15–30 Gy/min) have prompted some new investigations,(81-87) and a second look 
at experimental studies of earlier decades.(88-96) The dose rates that are usually quoted for both 
conventional and FFF (see Table 1) are averages, as dose is delivered in ~ 2 μs wide pulses 
with instantaneous dmax dose rates of approximately 1.7 × 102 Gy/s for conventional beams and 
approximately 7 × 102 Gy/s for FFF. According to theoretical estimates(94) and early radiobiology 
experiments,(83,96,97) FFF instantaneous dose rates are not expected to be high enough to affect 
cell survival through changes in the basic radiochemistry of radical recombination. 

It has been suggested that shorter total treatment times may result in less sublethal damage 
repair and thus more efficient tumorcidal effects, but also more risk of normal tissue damage(81) 
or conversely, that treatments of longer duration are less tumorcidally efficient.(82,94-87) A few 
studies have evaluated cell survival in vitro in FFF beams, but with differing results.(98,99) 

Clinically, FFF beams are just one means of reducing fraction delivery time — and FFF 
on its own does not necessarily lead to the most drastic decreases in total delivery time. The 
anticipated treatment delivery time difference between FFF and flattened beams is often less than 
the difference between IMRT and conventional therapies, or between IMRT and modulated arc 
therapy (VMAT) therapies. Additional confounding effects that may accompany reduction of 
treatment time in clinical studies include such things as improved positioning accuracy and the 
frequent combination of FFF with sophisticated image guidance — both of which should tend 
to improve local control on their own. The basic radiobiology of increased dose rate is certainly 
a subject of academic interest, and interested readers may wish to consult the references of this 
section, as well as additional sources.(93,100,101)  But it is unlikely that the question of whether the 
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radiobiology of the dose-rate increase in FFF beams can change clinical outcomes can be unrav-
eled from the ‘noise’ of the many other variables present in typical clinical outcomes studies.  

 
V. 	 FUTURE NEEDS 

Although extensive work has been done in many areas of study regarding FFF beams, research 
is still needed. 

Dosimetry questions may arise, as many detectors (including ion chambers) are dose-rate 
dependent and, therefore, may need different correction factors for FFF beams in order to 
achieve precision dosimetry.

For many of these issues, the impact of changing the primary beam energy requires atten-
tion. Most of the studies in the literature have used the same electron energy incident on the 
target for both flattened and FFF versions of the beam. The consequent softer photon spectrum 
produces, among other phenomena, a more shallow dmax, increased skin dose, and increased 
patient scatter. With the Siemens and Elekta implementation, the accelerating potential of the 
FFF beam is increased to restore the PDD. This may restore dmax to a corresponding flattened 
beam level, but other factors such as skin dose and patient scatter require further study. Readers 
of the literature must pay particular attention to the electron accelerating potential of the study 
they are reading. Clearer delineation of photon beam properties as a function of electron energy 
is necessary for FFF studies.

Skin dosimetry, its dependence on treatment parameters, and skin doses in clinical treat-
ments, requires further study. It has, to date, typically been assessed at a relatively deep depth, 
below where sensitive skin layers are generally assessed. The impact of treatment parameters 
also requires additional study. 

The role of FFF beams in radiotherapy would also be more clearly defined with further study 
on intrafractional motion and its possible interplay with MLC and gantry motion.

Clinical issues also need additional evaluation. Although FFF beams have been shown to 
be suitable for essentially all IMRT situations evaluated, is there a subset of clinical cases for 
which FFF IMRT is optimal? Additionally, for conventional therapy, is there a simple way to 
deliver flat fields without developing an inverse planned solution?

Finally, radiobiological issues remain somewhat unresolved. Although different dose rates 
are unlikely to be relevant in terms of basic chemistry, cell repair mechanisms may be affected. 
This could impact both tumor control and normal tissue toxicity, although the clinical ramifica-
tions of this remain unclear, particularly in the context of 3D CRT versus IMRT versus VMAT, 
where treatment times also vary substantially.

Despite the unanswered questions, FFF technology has been adopted rapidly and recom-
mendations are, therefore, provided in this document. Refinements to this technology and to 
clinical recommendations will no doubt occur as this technology matures. 

 
VI.	 RECOMMENDATIONS

Acceptance Testing (II.B)

1.	 Prior to measurements, evaluate dose rate dependence of measurement devices. 
2.	 Follow guidelines of TG-45 and TG-142 except that, for flatness, measure beam profile for 

conformance to specs.  
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Commissioning (II.C)

1.	 Calibration: Follow standard calibration protocol (e.g., TG-51) but account for beam differ-
ences (II.C.1):
Determine kQ per protocol, but expect a slightly different value.
Determine Pion with two-voltage technique, but verify validity of this approach.
Center the chamber, especially for higher energies.
Correct for partial volume averaging or use a smaller chamber.

2.	 General beam data (II.C.2): 
	 Evaluate variation of scanning chamber Pion for off-axis positions. 
	 Follow recommendations of TG106. 
3.	 Conduct end-to-end testing of the system (II.C.3).

Periodic QA (II.D)

1.	 Follow guidelines of TG-142, looking at profile consistency over time.
2.	 Test all QA measuring devices for dose-rate characteristics. 

Treatment Planning 

1.	 Make sure your TPS is able to handle FFF beams (II.E).
2.	 In view of the uncertainties (both measurement and TPS calculation) regarding FFF skin 

doses, use beam arrangements that spread out the skin dose (II.C.2).
3.	 Before clinical use at a specific disease site, do comparative planning for several cases to 

assess the plan quality with flattened vs. FFF beams for the same case (III.B, III.C).

Safety 

1.	 Construct an FMEA table to evaluate the risk of failure modes and test modes that are of 
most concern (III.G).

2.	 Verify R&V support for FFF beams (II.C.3).

Facility planning (III.H)

1.	 Existing vaults for same nominal energy are adequate.
2.	 New vaults with mixed flattened and FFF use, either use traditional (flattened) shielding 

(conservative), or reduced shielding if FFF use is expected to be substantial.
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