25 research outputs found

    Special considerations for studies of extracellular vesicles from parasitic helminths: A community-led roadmap to increase rigour and reproducibility

    Get PDF
    Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved

    Antibody trapping: a novel mechanism of parasite immune evasion by the trematode Echinostoma caproni

    Get PDF
    Background: Helminth infections are among the most prevalent neglected tropical diseases, causing an enormous impact in global health and the socioeconomic growth of developing countries. In this context, the study of helminth biology, with emphasis on host-parasite interactions, appears as a promising approach for developing new tools to prevent and control these infections. Methods/Principal findings: The role that antibody responses have on helminth infections is still not well understood. To go in depth into this issue, work on the intestinal helminth Echinostoma caproni (Trematoda: Echinostomatidae) has been undertaken. Adult parasites were recovered from infected mice and cultured in vitro. Double indirect immunofluoresce nce at increasing culture times was done to show that in vivo-bound surface antibodies become trapped within a layer of excretory/secretory products that covers the parasite. Entrapped antibodies are then degraded by parasite-derived proteases, since protease inhibitors prevent for antibody loss in culture. Electron microscopy and immunogold-labelling of secreted proteins provide evidence that this mechanism is consistent with tegument dynamics and ultrastructure, hence it is feasible to occur in vivo. Secretory vesicles discharge their content to the outside and released products are deposited over the parasite surface enabling antibody trapping. Conclusion/Significance: At the site of infection, both parasite secretion and antibody binding occur simultaneously and constantly. The continuous entrapment of bound antibodies with newly secreted products may serve to minimize the deleterious effects of the antibody-mediated attack. This mechanism of immune evasion may aid to understand the limited effect that antibody responses have in helminth infections, and may contribute to the basis for vaccine development against these highly prevalent diseases

    Novel cholinesterase paralogs of Schistosoma mansoni have perceived roles in cholinergic signaling and drug detoxification and are essential for parasite survival

    Get PDF
    Cholinesterase (ChE) function in schistosomes is essential for orchestration of parasite neurotransmission but has been poorly defined with respect to the molecules responsible. Interrogation of the S. mansoni genome has revealed the presence of three ChE domain-containing genes (Smche)s, which we have shown to encode two functional acetylcholinesterases (AChE)s (Smache1 -smp_154600 and Smache2 -smp_136690) and a butyrylcholinesterase (BChE) (Smbche1 -smp_125350). Antibodies to recombinant forms of each SmChE localized the proteins to the tegument of adults and schistosomula and developmental expression profiling differed among the three molecules, suggestive of functions extending beyond traditional cholinergic signaling. For the first time in schistosomes, we identified ChE enzymatic activity in fluke excretory/secretory (ES) products and, using proteomic approaches, attributed this activity to the presence of SmAChE1 and SmBChE1. Parasite survival in vitro and in vivo was significantly impaired by silencing of each smche, either individually or in combination, attesting to the essential roles of these molecules. Lastly, in the first characterization study of a BChE from helminths, evidence is provided that SmBChE1 may act as a bio-scavenger of AChE inhibitors as the addition of recombinant SmBChE1 to parasite cultures mitigated the effect of the anti-schistosome AChE inhibitor 2,2- dichlorovinyl dimethyl phosphate-dichlorvos (DDVP), whereas smbche1-silenced parasites displayed increased sensitivity to DDVP.Funding: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was funded by NHMRC program grant APP1037304, an NHMRC Senior Principal Research Fellowship (APP1117504) to A.L. and a James Cook University Postgraduate Scholarship to B.T

    A quantitative approach to the experimental transmission success of echinostoma friedi (trematoda: echinostomatidae) in rats

    Get PDF
    Using a range of parameters, the ability of rats (Rattus norvegicus) to successfully transmit Echinostoma friedi to the next host was examined under experimental conditions. The concept of Experimental Transmission Success (TM), defined as the number of hosts that become successfully infected after exposure to a number of infective stages produced by a previous host per unit of inoculation at which this latter host was exposed, was introduced. Using data for the egg output and miracidium hatching and infectivity, the TM permits us to estimate the ability of a particular defintive host species to successfully transmit a parasite species. This concept may be also useful to compare the transmission fitness of a parasite in different definitive host species. Moreover, variations of the Experimental Transmission Success over the course of the infection were calculated by the use of the Weekly Experimental Transmission Success (TMW). Overall, considering the complete duration of the experiment, the TM of E. friedi using rats as definitive hosts was 0.68 infected snails/metacercaria. However, positive values of the TMW were only obtained from 2 to 4 wk post-infection, with a maximum during the third wk post-infection. When comparing the TM values of E. friedi in rats with those calculated in hamsters on the basis of previously published data, E. friedi appears to be more appropriate to move through this portion of its life cycle when using hamsters (Mesocricetus auratus) as the final host than rats.Toledo Navarro, Rafael, [email protected] ; Carpena Hernandez, Ines, [email protected] ; Espert Fernandez, Ana M., [email protected] ; Sotillo Gallego, Javier, [email protected] ; Esteban Sanchis, Jose Guillermo, [email protected]

    The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease

    Get PDF
    BackgroundStrongyloidiasis is one of the most neglected diseases distributed worldwide with endemic areas in developed countries, where chronic infections are life threatening. Despite its impact, very little is known about the molecular biology of the parasite involved and its interplay with its hosts. Next generation sequencing technologies now provide unique opportunities to rapidly address these questions.Principal FindingsHere we present the first transcriptome of the third larval stage of S. stercoralis using 454 sequencing coupled with semi-automated bioinformatic analyses. 253,266 raw sequence reads were assembled into 11,250 contiguous sequences, most of which were novel. 8037 putative proteins were characterized based on homology, gene ontology and/or biochemical pathways. Comparison of the transcriptome of S. strongyloides with those of other nematodes, including S. ratti, revealed similarities in transcription of molecules inferred to have key roles in parasite-host interactions. Enzymatic proteins, like kinases and proteases, were abundant. 1213 putative excretory/secretory proteins were compiled using a new pipeline which included non-classical secretory proteins. Potential drug targets were also identified.ConclusionsOverall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic and metabolomic explorations of S. stercoralis, as well as a basis for applied outcomes, such as the development of novel methods of intervention against this neglected parasite

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Partial protection with a chimeric tetraspanin-leucine aminopeptidase subunit vaccine against Opisthorchis viverrini infection in hamsters

    Get PDF
    Opisthorchiasis is a serious public health problem in East Asia and Europe. The pathology involves hepatobiliary abnormalities such as cholangitis, choledocholithiasis and tissue fibrosis that can develop into cholangiocarcinoma. Prevention of infection is difficult as multiple social and behavioral factors are involved, thus, progress on a prophylactic vaccine against opisthorchiasis is urgently needed. Opisthorchis viverrini tetraspanin-2 (Ov-TSP-2) was previously described as a potential vaccine candidate conferring partial protection against O. viverrini infections in hamsters. In this study, we generated a recombinant chimeric form of the large extracellular loop of Ov-TSP-2 and O. viverrini leucine aminopeptidase, designated rOv-TSP-2-LAP. Hamsters were vaccinated with 100 and 200 mu g of rOv-TSP-2-LAP formulated with alum-CpG adjuvant via intraperitoneal injection and evaluated the level of protection against O. viverrini infection. Our results demonstrated that the number of worms recovered from hamsters vaccinated with either 100 or 200 mu g of rOv-TSP-2-LAP were significantly reduced by 27% compared to the adjuvant control group. Furthermore, the average length of worms recovered from animals vaccinated with 200 mu g of rOv-TSP-2-LAP was significantly shorter than those from the control adjuvant group. Immunized hamsters showed significantly increased serum levels of anti-rOv-TSP-2 IgG and IgG1 compared to adjuvant control group, suggesting that rOv-TSP-2-LAP vaccination induces a mixed Th1/Th2 immune response in hamsters. Therefore, the development of a suitable vaccine against opisthorchiasis requires further work involving new vaccine technologies to improve immunogenicity and protective efficacy

    Schistosoma haematobium Extracellular Vesicle Proteins Confer Protection in a Heterologous Model of Schistosomiasis.

    Get PDF
    Helminth parasites release extracellular vesicles which interact with the surrounding host tissues, mediating host-parasite communication and other fundamental processes of parasitism. As such, vesicle proteins present attractive targets for the development of novel intervention strategies to control these parasites and the diseases they cause. Herein, we describe the first proteomic analysis by LC-MS/MS of two types of extracellular vesicles (exosome-like, 120 k pellet vesicles and microvesicle-like, 15 k pellet vesicles) from adult Schistosoma haematobium worms. A total of 57 and 330 proteins were identified in the 120 k pellet vesicles and larger 15 k pellet vesicles, respectively, and some of the most abundant molecules included homologues of known helminth vaccine and diagnostic candidates such as Sm-TSP2, Sm23, glutathione S-transferase, saponins and aminopeptidases. Tetraspanins were highly represented in the analysis and found in both vesicle types. Vaccination of mice with recombinant versions of three of these tetraspanins induced protection in a heterologous challenge (S. mansoni) model of infection, resulting in significant reductions (averaged across two independent trials) in liver (47%, 38% and 41%) and intestinal (47%, 45% and 41%) egg burdens. These findings offer insight into the mechanisms by which anti-tetraspanin antibodies confer protection and highlight the potential that extracellular vesicle surface proteins offer as anti-helminth vaccines.This work was funded by the NHMRC program grant APP1037304. A.L. was funded by an NHMRC Senior Principal Research Fellowship (APP1117504). B.A.T. was funded by a James Cook University Postgraduate Scholarship. G.G.M. was funded by an AITHM Postgraduate Scholarship.S

    Proteomic identification of the contents of small extracellular vesicles from in vivo Plasmodium yoelii infection

    No full text
    Small extracellular vesicles, including exosomes, are formed by the endocytic pathway and contain genetic and protein material which reflect the contents of their cells of origin. These contents have a role in vesicle-mediated information transfer, as well as physiological and pathological functions. Thus, these vesicles are of great interest as therapeutic targets, or as vehicles for immunomodulatory control. In Plasmodium spp. infections, vesicles derived from the parasite or parasite-infected cells have been shown to induce the expression of pro-inflammatory elements, which have been correlated with manifestations of clinical disease. Herein, we characterised the protein cargo of naturally occurring sEVs in the plasma of P. yoelii-infected mice. After in vivo infections, extracellular vesicles in the size range of exosomes were collected by sequential centrifugation/ultracentrifugation followed by isopycnic gradient separation. Analysis of the vesicles was performed by transmission electron microscopy, dynamic light scattering, SDS–PAGE and flow cytometry. LC-MS analysis followed by bioinformatics analysis predicted parasite protein cargo associated with exosomes. Within these small extracellular vesicles, we identified proteins of interest as vaccine candidates, uncharacterized proteins which may be targets of T cell immunoreactivity, and proteins involved in metabolic processes, regulation, homeostasis and immunity. Importantly, the small extracellular vesicles studied in our work were obtained from in vivo infection rather than from the supernatant of in vitro cultures. These findings add to the growing interest in parasite small extracellular vesicles, further our understanding of the interactions between host and parasite, and identify novel proteins which may represent potential targets for vaccination against malaria

    Gastrointestinal helminth infection improves insulin sensitivity, decreases systemic inflammation, and alters the composition of gut microbiota in distinct mouse models of Type 2 Diabetes

    Get PDF
    Type 2 diabetes (T2D) is a major health problem and is considered one of the top 10 diseases leading to death globally. T2D has been widely associated with systemic and local inflammatory responses and with alterations in the gut microbiota. Microorganisms, including parasitic worms and gut microbes have exquisitely co-evolved with their hosts to establish an immunological interaction that is essential for the formation and maintenance of a balanced immune system, including suppression of excessive inflammation. Herein we show that both prophylactic and therapeutic infection of mice with the parasitic hookworm-like nematode, Nippostrongylus brasiliensis, significantly reduced fasting blood glucose, oral glucose tolerance and body weight gain in two different diet-induced mouse models of T2D. Helminth infection was associated with elevated type 2 immune responses including increased eosinophil numbers in the mesenteric lymph nodes, liver and adipose tissues, as well as increased expression of IL-4 and alternatively activated macrophage marker genes in adipose tissue, liver and gut. N. brasiliensis infection was also associated with significant compositional changes in the gut microbiota at both the phylum and order levels. Our findings show that N. brasiliensis infection drives changes in local and systemic immune cell populations, and that these changes are associated with a reduction in systemic and local inflammation and compositional changes in the gut microbiota which cumulatively might be responsible for the improved insulin sensitivity observed in infected mice. Our findings indicate that carefully controlled therapeutic hookworm infection in humans could be a novel approach for treating metabolic syndrome and thereby preventing T2D.This work was supported by the National Health and Medical Research Council (NHMRC) through a program grant (1132975) and senior principal research fellowship (1117504) to AL, an AITHM Capacity Building grant to PG, AL, and MF, and an Australian Research Council Special Research Initiative award to the Australian Institute of Tropical Health and Medicine at James Cook University (SRI40200003). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S
    corecore