194 research outputs found

    Functional characterization of synthetic leukotriene B and its stereochemical isomers.

    Get PDF
    Leukotriene B (LTB), a potent lipid chemotactic factor for neutrophils, is 5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid (Fig 1), based upon direct comparison of natural LTB with synthetic 5S,12R-dihydroxy-6,8,10,14-eicosatetraenoic acid (5,12-di-HETE) stereoisomers in three biological assays. Of the six synthetic stereoisomers evaluated, only the 5S,12R,6,14-cis,8,10-trans compound had chemotactic potency for human neutrophils in vitro that was comparable to that of natural LTB, with a concentration of 3 X 10(9-9) M eliciting a one-half maximum response. In contrast, the racemic mixture of 5R,12R- and 5S,12S-6,10-trans,8,14-cis, the racemic mixture of 5S,12R- and 5R,12S-6,10-trans,8,14-cis, the 5S,12R-6,8-trans,10,14-cis, the 5S,12R-6,8,10-trans,14-cis, and the 5S,12S-6,8,10-trans,14-cis stereoisomers required concentrations of 3 X 10(-7) to 1 X 10(-6) M to elicit comparable responses. Only natural LTB and its synthetic counterpart elicited a local neutrophil infiltration when injected into the skin of the rhesus monkey at 10 ng and 100 ng per site. Natural and synthetic LTB at a concentration of 3 X 10(-8) M each provoked an EC25 contractile response of guinea pig pulmonary parenchymal strips in vitro, whereas the other four tested stereoisomers of 5,12-di-HETE were inactive at this concentration. Structure-function analyses suggest that the neutrophil chemotactic activity depends critically upon the C-1 to C-12 domain, including the stereochemistry of the 6-,8-,and 10-olefinic bonds and the presence of both hydroxyl groups

    Laser excitation of the 1s-hyperfine transition in muonic hydrogen

    Get PDF
    The CREMA collaboration is pursuing a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen (ÎŒ\mup) with 1 ppm accuracy by means of pulsed laser spectroscopy to determine the two-photon-exchange contribution with 2×10−42\times10^{-4} relative accuracy. In the proposed experiment, the ÎŒ\mup atom undergoes a laser excitation from the singlet hyperfine state to the triplet hyperfine state, {then} is quenched back to the singlet state by an inelastic collision with a H2_2 molecule. The resulting increase of kinetic energy after the collisional deexcitation is used as a signature of a successful laser transition between hyperfine states. In this paper, we calculate the combined probability that a ÎŒ\mup atom initially in the singlet hyperfine state undergoes a laser excitation to the triplet state followed by a collisional-induced deexcitation back to the singlet state. This combined probability has been computed using the optical Bloch equations including the inelastic and elastic collisions. Omitting the decoherence effects caused by {the laser bandwidth and }collisions would overestimate the transition probability by more than a factor of two in the experimental conditions. Moreover, we also account for Doppler effects and provide the matrix element, the saturation fluence, the elastic and inelastic collision rates for the singlet and triplet states, and the resonance linewidth. This calculation thus quantifies one of the key unknowns of the HFS experiment, leading to a precise definition of the requirements for the laser system and to an optimization of the hydrogen gas target where ÎŒ\mup is formed and the laser spectroscopy will occur.Comment: 21 pages, 4 figure

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Pharmacological treatment options for mast cell activation disease

    Get PDF
    • 

    corecore