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Abstract: Chronic obstructive pulmonary disease (COPD) is a common and progressive disorder 
which is characterised by pathological abnormalities driven by chronic airway inflammation. The 
assessment of airway inflammation in routine clinical practice in COPD is limited to surrogate blood 
markers. Fractional exhaled nitric oxide (FENO) is a marker of eosinophilic airway inflammation in 
asthma, and it can predict steroid responsiveness and help tailor corticosteroid treatment. The clinical 
value of FENO in COPD is less evident, but some studies suggest that it may be a marker of the 
eosinophilic endotype. More importantly, mathematical methods allow investigation of the 
alveolar/small airway production of NO which potentially better reflects inflammatory changes in 
anatomical sites, most affected by COPD. This review summarises the pathophysiological role of 
nitric oxide in COPD, explains the methodology of its measurement in exhaled air and discusses 
clinical findings of FENO in COPD. 
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1. INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is the 
most common chronic disorder of the respiratory system and 
is currently the 4th leading cause of death worldwide [1]. 
COPD is characterised by structural and morphological 
changes in the airways, alveoli and pulmonary vasculature 
which lead to progressive airflow limitation [1]. Airway 
abnormalities predominantly concern the small, peripheral 
bronchioles, but larger airways can also be affected [2]. 
There is a considerable heterogeneity in the underlying 
pathophysiological mechanisms and the clinical course of the 
disease [3]. Not surprisingly, biomarkers identified in 
population-based studies were not useful in clinical practice 
[4]. Although COPD is not traditionally viewed as an 
inflammatory disease, accumulation of inflammatory cells 
and mediators in the respiratory tract is often seen in this 
disorder. The increased airway inflammation is related to 
disease activity, both in terms of the number of 
exacerbations and the rate of lung function decline [5].  

Airway inflammation can be assessed via invasive, semi- 
or non-invasive techniques. Invasive techniques include 
bronchial biopsies and brushings as well as bronchoalveolar 
lavage. These provide the most accurate and complex airway 
samples; however, they hold potential risk for side effects 
(i.e. bleeding, infection, pneumothorax, death) and generate 
airway inflammation per se. Airway cells and mediators can 
also be analysed in induced or spontaneous sputum samples,  
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however this technique may also induce low-grade 
inflammation and might be harmful as well. 

Exhaled breath analysis is a completely non-invasive 
method to study the airways, and it can be repeated within 
short-time intervals. The assessment of human breath has 
been used since ancient times to detect severe organ 
dysfunctions, such hepatic or renal failures or diabetic 
ketoacidosis. Currently, breath analysis is most commonly 
used for forensic purposes (i.e. breath alcohol) and 
Helicobacter pylori detection in medicine [6]. Exhaled 
breath contains thousands of volatile [7] and non-volatile [8] 
particles which are related to airway and systemic 
metabolism, inflammation and oxidative stress. Other 
modalities, such as exhaled breath temperature can also be 
used to study the airway inflammation in patients with 
COPD [9].  

Nitric oxide is one of the most widely investigated 
molecules in exhaled breath. The levels of fractional exhaled 
nitric oxide (FENO) are elevated in steroid-naïve patients 
with asthma and its reduction is a good indicator of an 
effective steroid treatment [10, 11]. Therefore, the recent 
Global Initiative for Asthma recommendations suggest using 
FENO as part of the clinical assessment in asthma [10]. 

The potential of FENO as a biomarker in COPD is less 
clear. Studies reported not only increased but also similar 
and even lower FENO levels in COPD [12-14]. Many of the 
pioneering studies focused on differences between COPD 
and health. However, we do not need discriminative 
biomarkers, for this purpose we have lung function. In 
contrary, biomarkers reflecting disease activity (i.e. 
predicting future exacerbations or the rate of lung function 
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decline) or predicting therapeutic response have to be 
identified. This review will focus on studies investigating the 
clinical potential of FENO. Of note, FENO can also be used 
as a non-invasive marker to study the nitrosative stress and 
eosinophilic inflammation in the airways. 

Mathematical models enable the partitioning of the 
central and distal sources for exhaled nitric oxide. As distal 
airways are potentially more prominently contribute to the 
disease pathophysiology, extended nitric oxide analysis 
deserves special attention.  

2. THE BIOLOGY OF NITRIC OXIDE IN COPD

Endogenous nitric oxide (NO) has been implicated in the 
pathogenesis of various diseases of the respiratory system, 
such as asthma, COPD, respiratory infections or obstructive 
sleep apnoea [15]. Nitric oxide is synthesised from L-
arginine by a cytosolic enzyme, the nitric oxide synthase 
(NOS). Three different NOS isoforms have been identified, 
which play various pathophysiologic roles. The neuronal 
(nNOS, NOS1) and endothelial isotypes (eNOS, NOS3) are 
constitutively expressed and their activation depends on 
calcium/calmodulin resulting NO in relatively low 
concentrations [16]. The third isoform is the inducible NOS 
(iNOS, NOS2) which is upregulated by various 
inflammatory stimuli and oxidative stress and generates NO 
at high levels [17]. Of note, nNOS may also be induced by 
nitrosative stress [17] and iNOS may have a constitutive 
expression in airway epithelium as well [18]. 

Neuronal NOS is expressed mainly in the cholinergic 
nerves of the airways and plays a role as a neurotransmitter 
in neural bronchodilatation [19]. Its expression is found to be 
both increased [17] and unaffected [20] in COPD. Possible 
explanations include variances in the sampled populations or 
differences in COPD phenotypes. However, discordant 
results also suggest that nNOS has a limited role in COPD 
compared to iNOS.  

Endothelial NOS is expressed in pulmonary endothelial 
cells [21], alveolar type II cells [22] and alveolar 
macrophages [23]. Nitric oxide produced by eNOS is a 
potent endogenous vasodilator which regulates the 
pulmonary vascular tone. Endothelial dysfunction in patients 
with COPD has been described long before, which attributes 
to the inadequate NO production in the lung [24]. This fact is 
supported by the reduced expression of eNOS in pulmonary 
arteries [25, 26] and veins [26] of heavy smokers. Smoking-
mediated oxidative stress can downregulate eNOS 
expression in mice and human lungs [27]. Various eNOS 
gene variants may enhance the susceptibility to COPD by 
inducing endothelial dysfunction and oxidative stress [28]. 
Interestingly, decreased [17], similar [20] and elevated [29] 
eNOS expressions have all been reported in COPD. 
Moreover, smoking-induced inflammatory processes and 
oxidative stress may modulate the production of eNOS [29]. 
Of note, eNOS may contribute to the pathomechanism of 
COPD via uncoupling, meaning that eNOS produces 
superoxides instead of NO in pathological states. Reduced 
bioavailability of tetrahydrobiopterin, which is the cofactor 
of eNOS, results in eNOS uncoupling and consequent 
ineffective vasodilatation in smokers [30]. 

Reports on increased iNOS in lung tissue in COPD are 
more coherent [17, 20, 31]. Inducible NOS has been 
identified in alveolar macrophages [23], alveolar type II cells 
[22, 31] and pulmonary arterial smooth muscle cells [32]. 
This enzyme can be induced by various stimuli, such as 
lipopolysaccharide (LPS), tumour necrosis factor (TNF) 
alpha, interleukins (IL) and reactive oxygen species [29, 33]. 
In humans, a co-stimulation is often required [34]. NF-kB is 
one of the crucial transcriptional factors, which plays a role 
in inducing iNOS expression [33].  

Nitric oxide has a pluripotent role in physiological 
circumstances and also in COPD. It regulates endothelium-
dependent vasodilatation and bronchodilatation via 
activating the soluble guanylyl cyclase pathway. In COPD, 
this pathway is damaged resulting in low cyclic-GMP levels 
and elevated tone of the smooth muscle cells in vessels and 
bronchi [35]. The insufficient vasodilatation is a key factor 
in the development of secondary pulmonary hypertension, a 
feature often complicating COPD [36]. In addition, NO can 
rapidly react with superoxide anion to form the potent 
oxidant peroxynitrite (ONOO-), which decreases the 
bioavailability of endogenous NO in COPD [37]. ONOO- 
reacts with a wide range of molecules resulting nitration, 
nitrosylation of different proteins, lipids and RNA [38] and 
is responsible for an anti-microbial defence [39-41]. 
However, peroxynitrite also has deleterious effects on human 
airway cells and corresponds to steroid insensitivity in 
COPD [42]. Supporting this, the levels of nitrotyrosine, a 
marker of nitrosative stress are elevated in induced sputum 
of patients with COPD [29, 37] and correlate with the 
severity of airway obstruction [29].  

Nitric oxide is involved in the cellular response to 
hypoxia. Hypoxia inducible factor can regulate the 
expression and activity of NOS isoenzymes. During 24 hours 
at a hypoxic state, eNOS expression and protein levels are 
decreased in human endothelial cells in vitro [43] leading to 
vasoconstriction and endothelial dysfunction. Ex vivo, 
human pulmonary arterial tissue eNOS expression is 
downregulated by the combination of hypoxia and 
inflammatory mediators, such as LPS, IL-1 and TNF-alpha 
[44]. The effect of hypoxia on iNOS expression was 
evaluated by in vitro studies [45], where iNOS mRNA and 
protein levels were increased by chronic hypoxia itself or 
combined with LPS and cytokine exposure [46-49]. 
However the biological activity of iNOS is decreased in 
acute hypoxia because of the impaired function of NOS 
without oxygen [45]. Neuronal NOS (nNOS) is similarly 
regulated under acute and chronic hypoxia, as demonstrated 
by Ward et al. [50]. These lines of evidence suggest that 
acute and chronic hypoxia have different effects on NO 
biology.  

3. PRINCIPLES OF EXHALED NITRIC OXIDE
MEASUREMENTS 

Nitric oxide is a gaseous and reactive molecule which 
can be measured in exhaled breath in particles per billion 
(ppb) concentrations. Of note, nasal passages may contribute 
significantly to the exhaled NO levels, therefore patients 
should exhale with a pressure of at least 5 cm H2O to close 
the soft palate and avoid nasal contamination. Using 
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standardised techniques, airway and nasal NO can be 
measured separately [6].  

Exhaled NO can be detected via chemiluminescent and 
electrochemical analysers or laser-spectroscopy [51]. 
Chemiluminescence is the gold-standard technique, but these 
devices are expensive, require space and unique investigator 
skills. Therefore, in clinical practice, less accurate, handheld 
electrochemical devices are also acceptable. The inter-
measurement repeatability for different electrochemical 
analysers is variable [52, 53]. This variability may attribute 
to poor NO tracings, which unfortunately cannot be 
visualised for electrochemical devices. The American 
Thoracic Society/European Respiratory Society (ATS/ERS) 
guidelines suggest two subsequent measurements for both 
the chemiluminescent and electrochemical devices with less 
than 10% differences between the values provided by the 
two measurements [54]. The recent ERS technical standard 
document acknowledges that one measurement can also be 
accepted due to financial issues with the electrochemical 
devices [6]. Of note, small but significant inter-device 
differences were noted, therefore the same device should be 
used in follow-up studies [53, 55]. It is well known that 
exhaled NO concentrations decrease with increasing 
expiratory flow [56], ATS/ERS recommendations set the 
target flow rate to 50 mL/s [6, 54]. Ideally, subjects should 
take a deep breath in through a filter and exhale against 
resistance using a nose-clip and target a constant flow rate 
for 6-10 seconds. A plateau with less than 10% variation 
should be used to calculate FENO [54]. Although inhalation 
to total lung capacity is recommended in the ATS/ERS 
guidelines [54], this is debated by some authors as lung 
stretch may alter NO formation [57]. Deep inhalation is 
suggested by the ERS recent technical standard document 
[6]. 

Similarly to lung function, FENO is affected by age, 
gender and height [58-60], and a number of physiological 
factors, such as menstrual cycle [61] or exercise [62]. 
However, correction on these factors is not currently 
recommended. The exhaled nitric oxide concentration is also 
influenced by diet [63], therefore it is advised to avoid 
consuming food with high nitrate levels, such as lettuce or 
spinach prior to FENO measurements. In clinical practice, 
mouthwash prior to FENO analysis is not routinely 
recommended [6]. Of note, due to potential confounding 
effect, FENO measurements should be performed before 
lung function testing [6].  

4. EXHALED NITRIC OXIDE IN COPD

The measurement of exhaled nitric oxide dates to the 
early 90s when different workgroups identified this molecule 
in breath samples and reported significant elevations in 
asthma [64, 65]. Since then, exhaled nitric oxide has been 
investigated in various pulmonary diseases, such as cystic 
fibrosis [66], bronchiectasis [67], respiratory infections [68] 
and OSA [69]. Unfortunately, FENO has proven far less 
clinically useful in these disorders than in asthma. 

As NOS enzymes are highly expressed in COPD, initial 
studies expected elevated FENO in this disorder. However, 
the results are contradictory showing elevated [13, 70, 71], 
similar [12, 72-74] and even reduced [14] levels. This 

discrepancy can be explained by numerous factors. First, 
COPD affects primarily the distal airways, while FENO 
measured at 50 mL/s represents the conducting bronchi. 
Second, cigarette smoking reduces exhaled NO levels [75] 
and even ex-smokers have lower FENO values compared to 
never-smokers [76]. Third, NO reacts very rapidly with the 
reactive oxygen species in the airways, and the lack of 
elevation in FENO may be a result of oxidative burden 
characterising COPD [77]. Fourth, cor pulmonale which 
frequently accompanies severe COPD is associated with 
endothelial dysfunction, leading to the impaired production 
of eNOS [24], and corresponding lower FENO levels [78]. 

Rather than comparing COPD to health, recent studies 
focused on the potential role of FENO of differentiating 
COPD from asthma and identifying asthma COPD overlap 
(ACO). Despite some promising results in smaller studies 
[79-81], a recent subgroup analysis of the population-based 
Copenhagen study showed a large variability of FENO 
results among patients with airway diseases and did not 
support the use of FENO either alone or in combination with 
blood eosinophils to differentiate asthma from COPD or to 
identify ACO [82]. Studies in COPD reported that a potential 
cut off levels of 25 ppb can be used to differentiate between 
ACO and non-ACO COPD [80, 81]. Elevated FENO in 
ACO is not surprising as high FENO levels were related to 
other asthma-like characteristics, such as bronchodilator 
reversibility [13, 83] and sputum eosinophilia [73, 75, 81, 83]. 

The clinical role of blood eosinophil count, a surrogate 
marker of airway eosinophilia has been widely recognised in 
predicting response to inhaled corticosteroids (ICS) in COPD 
[84]. Theoretically, FENO can serve a similar purpose and 
the limited number of studies supported this hypothesis [13, 
85-87]. Large comparative studies between blood eosinophil 
count and FENO are warranted to explore if FENO has any 
additive value to blood eosinophils in COPD. Furthermore, 
the long-term stability of FENO values in stable COPD 
needs to be tested similarly to blood eosinophil count [88]. 
As “low blood eosinophil” endotype proved to be more 
stable than the “high eosinophil” one [88], clinicians should 
use blood eosinophil counts to predict no benefit from ICS in 
patients with low blood eosinophils. In line with this, low 
FENO values (i.e. <25 ppb) may predict no response to ICS 
in COPD patients in clinical practice, a hypothesis which 
needs to be tested.  

In a recent article, Alcazar-Navarette et al. reported that 
persistently elevated FENO levels may also be predictive for 
future exacerbations [89], nevertheless this finding should be 
confirmed by other groups. Of note, FENO levels in COPD 
patients should be interpreted carefully, as both inhaled 
corticosteroids [13, 85, 90] and long-acting β2-agonists [91] 
may result in lower levels in these patients. Interestingly, 
while inhaling short-acting β2-agonist increases FENO 
values in asthmatic subjects, it does not have an effect in 
COPD patients [92]. 

Studies are more coherent when FENO was measured 
during acute exacerbation, showing an elevation compared to 
stable state [12, 93-96]. In addition, a significant association 
between sputum eosinophils and FENO during the onset of 
exacerbation has been reported [93, 97]. Eosinophilic acute 
exacerbations may be related to viral infections [93], which 
is supported by virus-induced increase in FENO [68]. 
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Airway eosinophilia is also related to a favourable response 
to systemic corticosteroids during exacerbations [84] which 
is supported by a significant association between elevated 
baseline FENO and good response to systemic 
corticosteroids in COPD [95]. Similarly to the stable state, a 
potential additive value of FENO to blood eosinophil count 
during exacerbation needs to be studied. Of note, although 
FENO at 50 mL/s can be measured in most stable patients, 
those with acute dyspnoea may struggle to provide a valid 
measurement. 

5. EXTENDED EXHALED NITRIC OXIDE ANALYSIS
IN COPD 

Peripheral airways disease is a major disease component 
of COPD, as the severity of airway inflammation in small 
airways shows a direct correlation with the degree of airflow 
limitation [98]. However, the non-invasive measurement of 
inflammation in the distal lung is an unresolved issue. The 
extended NO analysis allows the partitioned assessment of 
pulmonary NO parameters in the conducting airways and in 
the acinar region, holding promise as a feasible option for 
quantifying small airways inflammation in COPD.  

The extended NO analysis is based on the two-
compartment model of pulmonary NO dynamics, where the 
conducting airways (from trachea to terminal bronchi, 
airway generations 1-16) release NO to the airway lumen 
depending on the exhaled flow, while NO is released in the 
expansible acinar region at a constant rate (from respiratory 
bronchioles to alveoli). Several mathematical equations have 
been used so far, which can principally be divided into linear 
(Fig. 1) and non-linear models (detailed in other publications 
including [99-101]). Both models need NO concentrations at 
several exhaled flow rates as inputs and can give parameters 
describing inflammatory activity in conductive and small 
airways as outputs (Table 1). For the linear model at least 
two NO concentrations should be measured between 100-
500 mL/s flow rates, however, the recent technical standard 
document of the ERS recommends the detection of NO 
values at least at three flows [6]. For the non-linear model 
three data points are required i.e. a NO concentration 
measured at low (<20 mL/s), medium (100 mL/s) and high 
(≥350 mL/s) flow rates.  

Compared to the technical recommendations applied for 
FENO measurements [54], several issues must be considered 
when using the extended NO analysis. From the technical 
point of view, hand-held portable devices are generally not 
suitable for NO measurements at multiple flows, which can 
necessitate the application of more expensive 
instrumentation with higher maintenance costs. Patient-
related problems should also be considered. Some subjects 
especially those with airflow limitation such as patients with 

severe or uncontrolled COPD and asthma face difficulties 
holding expiration at slow flow rates (<50 mL/s) and 
generating fast flows (>200 mL/s) [102]. It is important that 
exhaled NO plateau is reached over a window longer than 3 
seconds at slow flow rates, which may need training for 
patients. Therefore, we and other authors found that the 
linear method is more feasible for measurements in patients 
with COPD [12, 103]. However, the non-linear model was 
shown to have the least mathematical error in patients with 
stable COPD [104]. Axial back-diffusion from the bronchial 
compartment to the acinar region was proposed as an 
important confounding mechanism of the two-compartment 
model, but general correction of NO parameters for axial 
back-diffusion is not recommended as currently used 
equations do not consider bronchoconstriction and hence 
could lead to overcorrection [6].  

The contribution of nitric oxide synthase isoforms to the 
production of airway NO has been studied. It was shown that 
compared to JawNO, which was significantly suppressed by 
an iNOS inhibitor, CANO was not modified by iNOS 
blocking suggesting the involvement of constitutive NOS 
isoforms in the release of NO in peripheral airways [105].  

Similar to FENO, JawNO was also lower in control 
smokers and ex-smokers than in non-smokers [76, 106], but 

Table 1. Parameters calculated from the two-compartment models. 

- Linear Modelling Non-linear Modelling 

Small airways Acinar/alveolar NO (CANO) Airway wall NO concentration (CawNO) 

Conducting airways Total flux of bronchial NO (JawNO) Total maximal flux of bronchial NO (J’awNO) 

- - Diffusing capacity of NO from the airway wall to the lumen (DawNO) 

Fig. (1). An example for the calculation of bronchial and alveolar 
NO parameters in the linear model of the extended analysis. The 
plateaus of expired NO concentration were detected at four constant 
exhalation flow rates (100-150-200-250 mL/s). Airway NO output 
(exhalation flow rate x NO concentration) is shown in relation to 
the exhalation flow rate. The goodness of linear fitting is 
demonstrated by the R2 value. The slope of the line corresponds to 
the acinar/alveolar NO concentration (CANO, ppb) and the 
intercept shows the bronchial NO flux (JawNO, nL/s). The model 
is described in detail by previous publications [99-101]. 
Measurements in a patient with stable COPD are presented from 
our own database. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 
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no change in stable COPD was noted [106]. Nonetheless, 
both parameters were increased during exacerbation 
compared to stable state [12]. JawNO and FENO could be 
decreased by inhaled and systemic steroid treatment in stable 
and exacerbated COPD, respectively [12, 107]. JawNO 
positively correlated with symptom scores in stable patients 
[108]. CawNO (airway wall NO concentration) was 
increased in smokers compared to ex-smoking COPD 
patients with no difference in airway diffusion of NO [109]. 
In contrast, in another study current smokers but not ex-
smokers showed decreased CawNO compared to non-
smokers [76].  

Alveolar NO concentration was shown to be increased in 
smoking patients with COPD compared to non-smokers 
[106] and ex-smoking patients and current smokers [109]. A 
negative association was noted between current smoking and 
CANO in control subjects [76]. Importantly, CANO was also 
higher in patients than in smoking-matched controls [12]. 
Using the non-linear model, no difference in CANO was 
found among clinical phenotypes of stable COPD including 
patients with emphysema, chronic bronchitis, frequent 
exacerbations and disturbed body composition [110]. 
Additionally, exacerbated patients showed increased CANO 
compared to smoking controls, but not to stable patients. In 
stable COPD, a short course of either inhaled or systemic 
steroid did not change CANO [87, 107, 111], which might be 
linked to the known corticosteroid resistance of airway 
inflammation in COPD. In line with this, alveolar NO was 
not modulated by systemic steroid therapy during an 
exacerbation [12], either. 

To conclude, the extended NO analysis provides insights 
on the degree of inflammation in central and peripheral 
airways. It allows the non-invasive monitoring of disease in 
the distal lung, which is the primary site of pathological 
processes in COPD, hence enabling the assessment of the 
efficacy of anti-inflammatory drugs. In contrast to bronchial 
NO parameters, alveolar NO concentration is not sensitive to 
steroids. The role of CANO in predicting exacerbations and 
progression of COPD should be further clarified.  

CONCLUSION 

Exhaled nitric oxide has been investigated extensively in 
COPD. Although the results are inconclusive when patients 
with COPD were compared to asthmatic or healthy controls, 
FENO has shown some potential when analysing various 
phenotypes or treatment response. However, these results 
need to be interpreted very carefully. Former studies usually 
set a FENO level of 25 ppb as an optional cut off point 
which separates asthma-like phenotypes (including 
eosinophilic airway inflammation and corticosteroid 
response). This is in line with the ATS clinical practice 
guidelines in asthma [11]; however the same document 
recommends using a 50 ppb value when determining 
eosinophilic phenotype, which is based on an upper limit of 
variability of FENO values in normal population. This 
implies that FENO values in COPD are within the normal 
range, therefore the interpretation of exhaled nitric oxide in 
clinical practice in COPD has crucial limitations (Fig. 2). 
Interestingly, recommendations on ICS use in COPD based 

on blood eosinophilic count also use cut off values of 200-
300 cells/µL which are within the normal range of healthy 
subjects [84].  

Measuring inflammation in the distal airways may be a 
potential target for drug development and may be more 
closely related to disease course. However, the potential of 
the extended nitric oxide analysis has not been tested and 
validated in large clinical trials.  
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