328 research outputs found

    Measuring cortical connectivity in Alzheimer's disease as a brain neural network pathology: Toward clinical applications

    Get PDF
    Objectives: The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer’s disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition. Methods: We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls). Results: Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior–posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited. Conclusions: Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD. (JINS, 2016, 22, 138–163

    Human background DNA on stones in an urban environment.

    Get PDF
    Stones are frequently used as tools in criminal acts. In our department, around 5 % of all analysed crime scene related trace samples are contact or touch DNA traces swabbed from stones. These samples are primarily related to cases of damage to property and burglary. In court, questions can arise about DNA transfer and the persistence of background DNA not related to the respective crime. To shed some light on the question of how likely it is to detect human DNA as background DNA on stones from an urban environment, the surfaces of 108 stones sampled throughout the city of Bern, the Swiss capital, were swabbed. We detected a median quantity of 33 pg on the sampled stones. STR-profiles suitable for a CODIS (Combined DNA Index System) registration in the Swiss DNA database were established from 6.5 % of all sampled stone surfaces. For comparison, retrospective casework data analysis from routine crime scene samples demonstrates a success rate of 20.6 % for the establishment of CODIS-suitable DNA profiles from stones sampled for touch DNA. We further investigated how climatic conditions, location and properties of the stones affected the quantity and quality of the recovered DNA. In this study, we show that the quantity of the measurable DNA decreases significantly with increasing temperature. Furthermore, less DNA could be recovered from porous stones, compared to smooth ones

    Robust Detection of Impaired Resting State Functional Connectivity Networks in Alzheimer's Disease Using Elastic Net Regularized Regression

    Get PDF
    The large number of multicollinear regional features that are provided by resting state (rs) fMRI data requires robust feature selection to uncover consistent networks of functional disconnection in Alzheimer's disease (AD). Here, we compared elastic net regularized and classical stepwise logistic regression in respect to consistency of feature selection and diagnostic accuracy using rs-fMRI data from four centers of the German resting-state initiative for diagnostic biomarkers (psymri.org), comprising 53 AD patients and 118 age and sex matched healthy controls. Using all possible pairs of correlations between the time series of rs-fMRI signal from 84 functionally defined brain regions as the initial set of predictor variables, we calculated accuracy of group discrimination and consistency of feature selection with bootstrap cross-validation. Mean areas under the receiver operating characteristic curves as measure of diagnostic accuracy were 0.70 in unregularized and 0.80 in regularized regression. Elastic net regression was insensitive to scanner effects and recovered a consistent network of functional connectivity decline in AD that encompassed parts of the dorsal default mode as well as brain regions involved in attention, executive control, and language processing. Stepwise logistic regression found no consistent network of AD related functional connectivity decline. Regularized regression has high potential to increase diagnostic accuracy and consistency of feature selection from multicollinear functional neuroimaging data in AD. Our findings suggest an extended network of functional alterations in AD, but the diagnostic accuracy of rs-fMRI in this multicenter setting did not reach the benchmark defined for a useful biomarker of AD

    More Consistently Altered Connectivity Patterns for Cerebellum and Medial Temporal Lobes than for Amygdala and Striatum in Schizophrenia

    Get PDF
    Background: Brain architecture can be divided into a cortico-thalamic system and modulatory "subcortical-cerebellar" systems containing key structures such as striatum, medial temporal lobes (MTLs), amygdala, and cerebellum. Subcortical-cerebellar systems are known to be altered in schizophrenia. In particular, intrinsic functional brain connectivity (iFC) between these systems has been consistently demonstrated in patients. While altered connectivity is known for each subcortical-cerebellar system separately, it is unknown whether subcortical-cerebellar systems' connectivity patterns with the cortico-thalamic system are comparably altered across systems, i.e., if separate subcortical-cerebellar systems' connectivity patterns are consistent across patients. Methods: To investigate this question, 18 patients with schizophrenia (3 unmedicated, 15 medicated with atypical antipsychotics) and 18 healthy controls were assessed by resting-state functional magnetic resonance imaging (fMRI). Independent component analysis of fMRI data revealed cortical intrinsic brain networks (NWs) with time courses representing proxies for cortico-thalamic system activity. Subcortical-cerebellar systems' activity was represented by fMRI-based time courses of selected regions-of interest (ROls;i.e., striatum, MTL, amygdala, cerebellum). Correlation analysis among ROI- and NWs time courses yielded individual connectivity matrices [i.e., connectivity between NW and ROls (alIROls-NW, separateROI-NW), only NWs (NWs-NWs), and only ROls (alIROls-alIROls)] as main outcome measures, which were classified by support-vector-machine-based (SVM) leave-one-out cross-validation. Differences in classification accuracy were statistically evaluated for consistency across subjects and systems. Results: Correlation matrices based on aIIROls-NWs yielded 91% classification accuracy, which was significantly superior to alIROls-alIROls and NWs-NWs (56 and 74%, respectively). Considering separate subcortical-cerebellar systems, cerebellum NWs and MTL-NWs reached highest accuracy values with 91 and 85%, respectively, while those of striatum-NW and amygdala-NW were significantly lower with about 65% classification accuracy. Conclusion: Results provide initial evidence for differential consistency of altered intrinsic connectivity patterns between subcortical-cerebellar systems and the corticothalamic system. Data suggest that differential dysconnectivity patterns between subcortical-cerebellar and cortical systems might reflect different disease states or patient subgroups

    The corticotopic organization of the human basal forebrain as revealed by regionally selective functional connectivity profiles

    Get PDF
    The cholinergic basal forebrain (CBF), comprising different groups of cortically projecting cholinergic neurons, plays a crucial role in higher cognitive processes and has been implicated in diverse neuropsychiatric disorders. A distinct corticotopic organization of CBF projections has been revealed in animal studies, but little is known about their organization in the human brain. We explored regional differences in functional connectivity (FC) profiles within the human CBF by applying a clustering approach to resting‐state functional magnetic resonance imaging (rs‐fMRI) data of healthy adult individuals (N = 85; 19–85 years). We further examined effects of age on FC of the identified CBF clusters and assessed the reproducibility of cluster‐specific FC profiles in independent data from healthy older individuals (N = 25; 65–89 years). Results showed that the human CBF is functionally organized into distinct anterior‐medial and posterior‐lateral subdivisions that largely follow anatomically defined boundaries of the medial septum/diagonal band and nucleus basalis Meynert. The anterior‐medial CBF subdivision was characterized by connectivity with the hippocampus and interconnected nodes of an extended medial cortical memory network, whereas the posterior‐lateral subdivision was specifically connected to anterior insula and dorsal anterior cingulate components of a salience/attention network. FC of both CBF subdivisions declined with increasing age, but the overall topography of subregion‐specific FC profiles was reproduced in independent rs‐fMRI data of healthy older individuals acquired in a typical clinical setting. Rs‐fMRI‐based assessments of subregion‐specific CBF function may complement established volumetric approaches for the in vivo study of CBF involvement in neuropsychiatric disorders

    Designing microarray phantoms for hyperspectral imaging validation

    Get PDF
    The design and fabrication of custom-tailored microarrays for use as phantoms in the characterization of hyperspectral imaging systems is described. Corresponding analysis methods for biologically relevant samples are also discussed. An image-based phantom design was used to program a microarrayer robot to print prescribed mixtures of dyes onto microscope slides. The resulting arrays were imaged by a hyperspectral imaging microscope. The shape of the spots results in significant scattering signals, which can be used to test image analysis algorithms. Separation of the scattering signals allowed elucidation of individual dye spectra. In addition, spectral fitting of the absorbance spectra of complex dye mixtures was performed in order to determine local dye concentrations. Such microarray phantoms provide a robust testing platform for comparisons of hyperspectral imaging acquisition and analysis methods

    Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is characterized by altered intrinsic functional connectivity within (intra-iFC) intrinsic connectivity networks (ICNs),such as the Default Mode- (DMN),Salience- (SN) and Central Executive Network (CEN). It has been proposed that aberrant switching between DMN-mediated self-referential and CEN-mediated goal-directed cognitive processes might contribute to MDD, possibly explaining patients' difficulties to disengage the processing of self-focused, often negatively biased thoughts. Recently, it has been shown that the right anterior insula (rAl) within the SN is modulating DMN/CEN interactions. Since structural and functional alterations within the Al have been frequently reported in MDD, we hypothesized that aberrant intra-iFC in the SN's rAl is associated with both aberrant iFC between DMN and CEN (inter-iFC) and severity of symptoms in MDD. Twenty-five patients with MDD and 25 healthy controls were assessed using resting-state fMRI (rs-fMRI) and psychometric examination. High-model-order independent component analysis (ICA) of rs-fMRI data was performed to identify ICNs including DMN, SN, and CEN. Intra-iFC within and inter-iFC between distinct subsystems of the DMN, SN, and CEN were calculated, compared between groups and correlated with the severity of symptoms. Patients with MDD showed (1) decreased intra-iFC within the SN's rAl,(2) decreased inter-iFC between the DMN and CEN, and (3) increased inter-iFC between the SN and DMN. Moreover, decreased intra-iFC in the SN's rAl was associated with severity of symptoms and aberrant DMN/CEN interactions, with the latter losing significance after correction for multiple comparisons. Our results provide evidence for a relationship between aberrant intra-iFC in the salience network's rAl, aberrant DMN/CEN interactions and severity of symptoms, suggesting a link between aberrant salience mapping, abnormal coordination of DMN/CEN based cognitive processes and psychopathology in MDD

    Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model

    Get PDF
    Indexación: Scopus.Clostridium difficile is a Gram-positive, spore-forming anaerobic human gastrointestinal pathogen. C. difficile infection (CDI) is a major health concern worldwide, with symptoms ranging from diarrhea to pseudomembranous colitis, toxic megacolon, sepsis, and death. CDI onset and progression are mostly caused by intestinal dysbiosis and exposure to C. difficile spores. Current treatment strategies include antibiotics; however, antibiotic use is often associated with high recurrence rates and an increased risk of antibiotic resistance. Medium-chain fatty acids (MCFAs) have been revealed to inhibit the growth of multiple human bacterial pathogens. Components of coconut oil, which include lauric acid, have been revealed to inhibit C. difficile growth in vitro. In this study, we demonstrated that lauric acid exhibits potent antimicrobial activities against multiple toxigenic C. difficile isolates in vitro. The inhibitory effect of lauric acid is partly due to reactive oxygen species (ROS) generation and cell membrane damage. The administration of lauric acid considerably reduced biofilm formation and preformed biofilms in a dose-dependent manner. Importantly, in a mouse infection model, lauric acid pretreatment reduced CDI symptoms and proinflammatory cytokine production. Our combined results suggest that the naturally occurring MCFA lauric acid is a novel C. difficile inhibitor and is useful in the development of an alternative or adjunctive treatment for CDI.https://www.frontiersin.org/articles/10.3389/fmicb.2017.02635/ful
    corecore